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Abstract 
Previous studies on the effects constraint in elastic plastic fracture mechanics are mainly 
confined only to mode I cracks. Very little research has been carried out to study the 
effects of constraint on mode II brittle fracture. In this research the variation of QII with 
applied load is obtained for a mode II specimen. The specimen is simulated by the finite 
element method to determine the extent of validity of QII determined from the Q-T 
diagram. The constraint parameter QII obtained from the finite element results (or the full 
field solution) is compared with QII predicted using the Q-T diagram. It is shown that the 
results of the full field solution are in good agreement with those of the Q-T diagram, but 
only for low levels of load. For higher loads the discrepancy between the results of two 
methods becomes significant. 

 

Introduction 
Elastic-plastic fracture mechanics (EPFM) deals with cracked specimens in which a 
significant volume around the crack tip undergoes plastic deformation prior to initiation 
of fracture. For such cases, which very often happen for metallic alloys, the failure 
mechanism can be either brittle fracture or ductile failure. For specimens failing by the 
mechanism of brittle fracture, the unstable fracture takes place when the path 
independent integral J attains a critical value Jc which is a material property. Because the 
stress field inside the plastic zone near the crack tip is often described by J, the critical 
value Jc corresponds to the critical stress needed for initiation of crack extension in stress 
controlled models for brittle fracture. 

Mixed mode specimens can also fail by the mechanism of brittle fracture even in the 
presence of significant plasticity around the crack tip. This has been shown for example 
through experiments carried out by Maccagno and Knott [1] for several steel alloys. The 
direction and the onset of crack growth for such cases can often be predicted by using the 
mixed mode fracture criteria. However, some modifications are needed to account for the 
effect of crack tip plasticity. For example, the maximum tangential stress (MTS) criterion 
[2] can be extended to solve the elastic-plastic crack problem in mixed mode loading. 
Maccagno and Knott [1,3] showed for several steel alloys that the fracture load predicted 
using the elastic-plastic MTS criterion are in better agreement with the experimental 
results than those predicted by the linear elastic MTS criterion.  
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Meanwhile, the experimental studies for mode I cracks show that the fracture 
toughness obtained from different conventional cracked specimens made of similar 
material are not the same. This indicates that the fracture toughness or the critical value 
of J for fracture initiation Jc is not merely a material property but depends also on the 
geometry and loading configurations. The geometry dependency of fracture toughness 
can be attributed to the effect of the crack tip constraint. Based on the classical theories 
of fracture mechanics, the stresses and strains around the tip of a mode I crack can be 
characterised by a single parameter such as KI or J. This is true only when certain size 
restrictions are applied for each crack specimen [4]. However, the geometry dependency 
of the fracture toughness suggests that at least a second parameter like T or Q is required 
to predict the critical conditions for crack growth in different specimens [5-7].  

Very little research has been carried out to study the effect of constraint in mode II 
and mixed mode (I/II) loading (see for example [8]). This is partly because of a common 
assumption that the T-stress is always zero for mode II deformation. Ayatollahi et al. 
[9,10] have shown that there are many real mode II loading conditions involving 
significant values of T. The effects of a far field T-stress on the near crack-tip elastic-
plastic stresses have been recently investigated for mode II deformation by Ayatollahi et 
all [11]. Using a mode II constraint parameter QII , they [11] developed a Q-T diagram to 
estimate the crack tip constraint from the T-stress. However, it is important to study the 
range of validity of the J-T formulation using practical crack specimens.  

In this paper the constraint parameter QII is predicted from the Q-T diagram for a 
mode II specimen. The parameter QII is also determined directly from the finite element 
results. These two calculated values of QII are compared and the related results are 
discussed. 
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        FIGURE 1. QII-T diagram for n =8 [1]. 
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T-Q relation in mode II 
It is common to use a so-called boundary layer model to study the effect of the crack tip 
parameters on the stresses inside the plastic zone. In the boundary layer model (BLM) a 
crack is considered in a circular region so that the crack tip is placed in the center of the 
region. The elastic stresses or displacements corresponding to the singular term and T 
term in the Williams’ series expansions are applied to the boundary of the region. 
Material properties are considered to be elastic-plastic. To ensure the conditions 
necessary for contained yielding, the magnitudes of the boundary conditions should be 
limited to a level at which the maximum radius of plastic zone is small compared with 
the radius of the circular region. If the T term on the boundary is zero, the stresses inside 
the plastic zone are in good agreement with the stresses given by the HRR solution[5-7]. 

The boundary layer model can also be used for quantifying the crack tip constraint 
[6,7]. The mode I constraint parameter QI corresponding to brittle fracture is determined 
as 
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where σo is the yield stress, σθθ is the tangential stress and (σθθ)REF is either the HRR 
solution for mode I or the boundary layer solution for small scale yielding with T=0. A 
similar formulation can be used to determine QII for mode II cracks [11]. However, in 
this case, brittle fracture no longer takes place along the crack line. If the maximum 
tangential stress (MTS) criterion [2] is adopted for predicting the direction of fracture 
initiation, the crack tip constraint should be studied along the direction of maximum 
tangential stress θo around the crack tip. Therefore, the constraint parameter in brittle 
fracture for mode II loading QII can be determined from  

 

 
FIGURE 2. Mode II specimen. 
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Here (σθθ )REF is either the HRR solution for σθθ  in mode II or the mode II boundary 
layer solution for small scale yielding (T=0). Using a set of finite element analysis 
Ayatollahi et al [11] derived the relation between Q and the T-stress for hardening 
coefficient n=3, 8, 13. Fig. 1 shows the Q-T diagram for n=8 . 

 

Finite Element Modeling 
In real specimens, the variation of the constraint parameter Q with load can be 
determined directly from the near crack tip stresses using finite element results. 
Alternatively, the Q parameter can be predicted from a Q-T diagram using the value of 
the T-stress corresponding to the load. In this paper, the variation of QII with applied load 
is obtained for a mode II specimen. The specimen, as shown in Fig. 2, is subjected to 
positive shear for tensile loading and negative shear for compressive loading [12]. The 
finite element results for QII are used to study the extent of validity of the results obtained 
from the Q-T diagram. 

The mode II specimen is considered to be elastic-plastic with n=8, α =1.2 in the 
Ramberg-Osgood stress-strain relation and with Young’s modulus E=214 GPa, Poisson’s 
ratio ν =0.3 and yield stress σo=400MPa. To calculate the T-stress, the specimen was first 
simulated by an elastic finite element analysis with the Young’s modulus and Poisson’s 
ratio given above. The specimen was subjected to compressive and tensile reference 
loads of the same magnitude 5 kN. A comparison of the displacement components along 
the crack faces showed that the mode I stress intensity factor KI is negligible relative to 
KII. Therefore, the specimen can be considered as a mode II crack specimen. The J-
integral was equal to 2027 N/m for both cases of tensile and compressive loading. The T-
stress was determined by using the displacement method described in [10] for mixed 
mode loading. The value of T-stress for compressive loading was -28 MPa and for tensile 
loading was +28 MPa. With reference to the sign of the T-stress, in the present analysis 
the mode II specimen is called a positive T shear specimen for tensile loading and a 
negative T shear specimen for compressive loading.  

 

Variation of QII with T for mode II specimen 
To study the evolution of crack tip constraint, two finite element analyses are carried out 
for each loading models: tensile loading and compressive loading. In the first analysis, 
QII is determined from a full field solution. The specimen is considered to be elastic-
plastic and in the state of plane strain. The shear load is increased beyond the load at 
which full plasticity takes place in front of the crack tip. The constraint parameter QII is 
calculated at r=2J/σo along the direction of maximum tangential stress at different load 
increments throughout the analysis. 
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For the second analysis the relation between the T-stress and the applied load should 
be known. Using the reference elastic analysis described in the previous section, the 
relation between the T-stress and the applied load Ps can be written in general as 

 
ss PYT .=      (3) 

 

where Ys is a constant factor depending on the type of loading. The factor Ys is +5.6 and 
 MPa/kN for the positive shear and negative shear models, respectively. For the 

second analysis, the T-stress is determined (using Eq. (3)) at the same loads used to 
calculate Q

6.5−

II in the first finite element analysis. These values of T are employed to 
determine QII from Fig. 1 according to the Q-T diagram for n=8. 

 

Results and Discussion 
Fig. 3 shows the results for QII obtained from the full field solution compared with those 
determined from the Q-T diagram for the positive T specimen (tensile loading). Similar 
results are shown in Fig. 4 for the negative T specimen (compressive loading). It is seen 
in these figures that the results of the two approaches are in good agreement but only for 
lower load levels. As the load is increased, the difference between the results becomes 
significant. For loads higher than those to cause full plasticity, the absolute value of QII 
drops significantly by increasing load. This is mainly due to the excessive plastic 
deformation leading to the relief of constraint around the crack tip. It is observed from 
Figs. 3 and 4 that the extent of agreement between the results of the full field solution 
and those of the Q-T diagram and also the onset of the drop in the results of the full field 
solution vary slightly for +T and –T shear specimens. 
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FIGURE 3. Variations of constraint with load for tensile loading. 
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FIGURE 4. Variations of constraint with load for compressive loading. 

 

Figs 5 and 6 display the variation of the tangential stress σθθ normalized with respect 
to the yield stress σo obtained from the first finite element analysis with elastic-plastic 
behavior for the specimen. Fig. 5 shows the variations of σθθ / σo with the normalized 
distance rσo/J along the direction of maximum tangential stress θ o for the positive T 
specimen (tensile loading). Fig. 6 displays similar results but for the negative T 
specimen. In both figures, the tangential stress has been shown at different levels of load 
represented here by Log(J/aσo) where a is the crack length. 
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FIGURE 5. Radial variations of tangential stress along θo for tensile loading. 
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For the positive T specimen (Fig. 5) the tangential stress initially increases until a load 
corresponding to Log(J/aσo)= -3.4 and then decreases gradually below the small scale 
yielding solution with T=0 (or the HRR solution). The stresses are almost parallel for 
1<rσo /J<5, although at higher levels of load the stress curves diverge slightly. The 
change in the stress curves can also be predicted by the results shown in Fig. 3. Since the 
T-stress is positive in tensile loading, the constraint parameter QII calculated using the Q-
T diagram increases as shown in Fig. 3. However, the Q-T diagram, obtained for small to 
moderate scale yielding, does not give accurate results for large scale yielding. Therefore, 
the J-T approach cannot be used beyond Log(J/aσo) =-3.4 where the tangential stress 
begins to reduce due to excessive plastic deformation and loss of constraint. The stresses 
are still parallel up to full plasticity implying that the J-Q approach is valid for larger 
extents of plastic deformation. However, for loads higher than that corresponding to full 
plasticity, the stress curves diverge gradually and the J-Q approach is not suitable to 
describe the crack tip stresses. 

Fig. 6 shows that for the negative T specimen, the tangential stress is always below the 
HRR solution. The stresses are parallel between 1<rσo /J<5 up to Log(J/aσo)=-3.1 and 
diverge considerably beyond it. It is seen from Fig. 4 that again the J-T approach is valid 
for small to moderate scale yielding, the J-Q approach can be used up to full plasticity 
and that a two-parameter characterisation is no longer applicable beyond the full 
plasticity.  
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FIGURE 6. Radial variations of tangential stress along θo for compressive loading. 
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Conclusions 
• The mode II constraint parameter QII was determined in terms of T/σo for small 

scale yielding. It can be expected that the mode II fracture toughness in brittle 
materials increases for shear specimens having a negative T-stress and decreases 
for those having a positive T-stress. 

• QII was calculated for two types of shear loading using both the full field solution 
and the Q-T diagram. The results of the Q-T diagram were in agreement with 
those of the full field solution for small to moderate scale yielding but not for 
large scale yielding. 

• Elastic-plastic finite element analysis of the shear specimen showed that the near 
crack tip tangential stresses can be predicted for contained yielding using a two-
parameter characterization approach. The J-T approach can be used for small to 
moderate scale yielding and the J-Q approach can be used up to full plasticity. 
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