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Estimating 3-D SE(B) Fracture Parameters
using 2-D Equations
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ABSTRACT: The present study was conducted to assess the accuracy of plane-stress or
plane-strain approximations when used to assess the state of three-dimensional samples.
SE(B) samples were modelled by 2-D and 3-D finite elements and load/CMOD compliance
and elastic J-integrals were calculated for elastic deformations; no attempt was made to
study the effects of plasticity. The calculated 2-D and 3-D results were compared with those
estimated using the equations given in ASTM E 1820. For a standard B×2B SE(B) sample
with a/W = 0.5, the crack front is in a near-plane-strain state over most of the specimen
thickness, although the specimen as a whole is in a mixed plane-strain/plane-stress state.
The stress state changes continuously from plane strain to plane stress as the distance from
crack tip (r) increases, and is close to plane stress when r/b = 0.6 to 0.8 where b is the
width of the ligament. Near the point of load application (r/b = 1), the stress state is close
to plane strain. In general, the out-of-plane stress state is closest to plane strain in the
regions of highest in-plane stress gradient. The crack length calculated from CMOD
compliance is approximated better by a 2-D plane-stress equation than by a plane-strain
one. Experimental results are reported which substantiate this conclusion. Also, the
relation between the elastic J-integral (calculated by the virtual crack extension method)
and the stress intensity factor is in closer agreement to a 2-D plane-stress equation than a
plane-strain one.

INTRODUCTION

The first widely-accepted standard to measure fracture toughness was
ASTM E 399, “Standard Test Method for Plane-Strain Fracture Toughness
of Metallic Materials”. This Standard specified a B×2B test-piece geometry
(thickness B, width W=2B) with a/W.0.5, and stated that this specimen
geometry assured that the crack tip would be in a condition of plane-strain
constraint. The crack length is calculated from specimen compliance. Early
experiments were done using load-line-displacement compliance, but
currently crack-mouth-opening compliance is preferred, as outlined in the
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current standard ASTM E 1820, Standard Test Method for Measurement of
Fracture Toughness.

Since the fracture toughness test ensures plane-strain constraint, it is
natural to assume that the specimen compliance would be a plane-strain
compliance. However, in recent revisions of the Standard, the compliance
expressions are those of plane-stress constraint, raising the question of
whether the overall deformation is in reality best described as plane strain or
plane stress. In addition, the situation has been further confused by the
introduction in the first edition of ASTM E 1921, “Standard Test Method
for Determination of Reference Temperature, T0 , for Ferritic Steels in the
Transition Range”, of an equation to calculate the elastic component of the
J-integral from the plane-stress relation between J and stress intensity factor
K rather than the plane-strain one. It has been recently explained that this
was the result of an editorial slip-up, but nevertheless it focused attention on
the question of whether the constraint is plane-stress or plane-strain. It was
the intent of the current work to contribute to the resolution of this question.

CALCULATIONS

Single-edge bend SE(B) samples were modelled by 2-D and 3-D finite
elements and load/CMOD compliance and elastic J-integrals were
calculated for elastic deformations; no attempt was made to study the effects
of plasticity. The finite element code used in the calculation is ADINA [1].
The calculated 2-D and 3-D results were compared with those estimated
using the equations given in ASTM E 1820.

Two-Dimensional Modelling
To confirm the accuracy of the calculations, 2-D plane strain finite element
analyses (FEM) were conducted for two SE(B) samples (a/W = 0.5 and 0.6)
with plane strain conditions. Crack lengths calculated from the equations in
E 1820 using the FEM compliances agreed within 0.2% with the assumed
geometries. Also, J-integrals were calculated using the virtual crack
extension (VCE) method and used to deduce values of stress intensity factor
K from J = K2/EΝ where EΝ = E/(1-ν2). Values of K were within 0.1% of
those calculated using the ASTM equation for K (which was fitted to earlier
FEM calculations for plane-strain constraint).

Three-Dimensional Modelling
A B×2B SE(B) sample (a/W = 0.5) was modelled by 3-D finite elements.
Because of symmetry, only a quarter of the sample was modelled. A fine
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mesh was used with 12 layers of elements of non-uniform spacing in the
thickness direction. There are, in all, 83905 nodes and 19200 eight-node
parametric elements. Singular elements were used around the crack tip to
model the crack tip singularity. Load was applied by means of a uniform
displacement along the centre line. The material was assumed to be elastic
with  modulus of elasticity E = 207 GPa and Poisson’s ratio ν = 0.3.

Figure 1 shows the three normal stress components (normalized by E) as
a function of distance r (normalized by ligament b) from the crack front on
the centre plane (distance normal to the crack plane y = 0, distance along the
crack front from the centre plane z = 0).
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Figure 1: Normal stress components along centre layer as a function of
distance r from crack tip (y = 0, z = 0, b = ligament length).
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Figure 2: Ratio of Φzz to (Φxx + Φyy) at ligament (y = 0, z = 0).
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Figure 3: Ratio of of Φzz  to (Φxx + Φyy) along thickness direction z at the
crack tip (r = 0).

Figure 1 shows that the neutral axis (for which Φyy = 0) is near the centre
but closer to the crack tip, as expected. Figure 2 shows that the stress state
changes continuously from plane strain to plane stress as the distance from
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the crack tip (r) increases, and is close to plane stress when r/b = 0.6 to 0.8.
The degree of plane strain constraint drops to half at a distance from the
crack tip of the order of 20% of the ligament. Close to the point of load
application (r/b = 1), the stress state is close to plane strain. Figure 3 shows
that the stress state is one of near-plane-strain along most of the crack front.

Estimation of crack length from compliance
The load/CMOD compliance was calculated by FEM, and used to evaluate
crack length from the ASTM compliance equation. Values of the non-
dimensional compliance for both 3-D and 2-D geometries are reported in
Table 1. The crack length was evaluated from the 3-D compliance assuming
both plane stress and plane strain constraint (in the latter case replacing E in
the ASTM equation with E/(1- ν2)). Similar calculations were conducted with
a/W = 0.6 for B×2B and B×B SE(B) samples. All the calculated crack lengths
are listed in Table 1. In the table, Ci is the CMOD compliance and S is the
loading span.

TABLE 1: Comparison of crack lengths

BWECi/(S/4) a/W evaluated from compliance

2-DGeometry
a/W

(actual
mesh)

plane stress plane strain
3-D plane stress difference from

actual a/W (%) plane strain difference from
actual a/W (%)

Bx2B 0.5 35.58 32.37 34.85 0.496 -0.8 0.513 +2.6

Bx2B 0.6 63.82 58.07 62.40 0.595 -0.8 0.610 +1.7

BxB 0.6 63.82 58.07 60.85 0.591 -1.5 0.606 +1.0

The 2-D compliance is larger for plane stress than for plane strain, the ratio
between the two being 1/(1-ν2) as expected. The 3-D compliance lies
between the two limits, again as expected. For the standard sample
geometry (B×2B) the value of a/W calculated from the compliance using the
plane stress equation is much closer to the actual value for both a/W = 0.5
and a/W = 0.6 than that using the plane strain equation.

Evaluation of Stress Intensity Factors from Near-Crack-Tip Stress
The local stress intensity factor K was also evaluated from the local opening
stress Φyy by extrapolation of Φyy(2Βr)1/2 to r = 0 (“stress method”). K was
then normalized to obtain F = K/K0 where K0 = Φ(Βa)1/2; Φ = 3PS/(2BW2)
for the SE(B) sample (a/W = 0.5) in three-point bending and P is the applied
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load. Results are shown in Fig. 4. The stress intensity factor calculated from
the applied load using the ASTM formula is also shown in the figure for
comparison. The normalized stress intensity factor at the centre of the 3-D
sample is about 7% higher than that calculated from the applied load. In
terms of the normalized stress intensity factor, F = 1.416 from the ASTM
formula, and F = 1.500 (centre) and 0.775 (surface) from the 3-D
calculation. As a consistency check, the plane strain FEM calculations gave
F = 1.407 for both the 2-D and 3-D geometries, in essential agreement with
the ASTM result.
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Figure 4: Normalized local stress intensity factors of a 3-D B×2B SE(B)
sample along the crack front as a function of distance z from the centre
plane.

Evaluation of J-integral
The J-integral at the centre of the crack front (z = 0) was evaluated by the
virtual crack extension (VCE) method. ADINA provides for calculation of
local J-integral values, i.e. point-by-point values rather than average ones.
The J-integral at the same load was also calculated using the equations given
in ASTM E 1820 by calculating the stress intensity factor from the applied
load and then the J-integral from J = K2/EΝ. The latter calculation was
performed assuming both plane strain and plane stress constraint, i.e. by
using the relevant effective modulus EΝ with the 2-D relation. The ratios of
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the 3-D J-integral to the values calculated from the stress intensity factors
using the effective modulus for plane stress and plane strain are 0.967 and
1.062 respectively.

Experimental Verification
Twenty-six SE(B) samples (B×2B, a/W = 0.5, W = 38 mm) were tested in
three-point bending. The material was CSA 350A steel (E = 207 GPa, ν=
0.3, Φy  = 390 MPa, Φu = 535 MPa). All the samples were tested at -110oC.
Standard tensile tests were conducted to measure the mechanical properties,
including the modulus of elasticity, from -160o to 60oC. The temperature
dependence of the modulus over this temperature range was well
approximated by a linear equation:

E = F1 – F2T                                                 (1)

where T is the temperature in oC, F1 = 208.5 GPa and F2 = 0.0435 GPa/oC.
The modulus calculated from eqn (6) is 213 GPa at T = -110oC.

The load and crack mouth opening displacement were recorded for each
sample. Crack lengths were then evaluated from the CMOD compliance for
each sample using the equations given in ASTM E 1820. For comparison,
the crack lengths were also evaluated using plane strain equations. After
testing, the crack length of each sample was measured on the fracture
surface by the 9-point-average technique described in ASTM E 1820. Figure
5 shows the ratio of crack length measured from compliance (both plane
stress and plane strain) to that measured using the 9-point average. The
mean of the ratios is also shown in the figures. The mean using the plane-
stress assumption (1.002) is much closer to unity than that assuming plane
strain (1.035).
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Figure 5: Ratio of crack length calculated from CMOD compliance to that
measured by nine-point average technique; nominal a/W = 0.5.

DISCUSSION

The most striking feature of these results is the observation that the local
stress intensity factor derived from the crack-tip stresses is actually larger
than the stress intensity factor calculated from the applied load using the
ASTM formula. This is surprising, since the value of the geometry factor F
is identical in two dimensions for either plane strain or plane stress; the
natural assumption is that the factor seems to be independent of constraint
and should therefore be the same for mixed plane strain/plane stress
conditions. It may be that the average value of the geometry factor F
averaged along the crack front in the 3-D case is close to the 2-D result, but
this was not checked. It is also surprising that the J integral at the mid-plane
z = 0 (J3-D) is related to the stress intensity factor K2-D (calculated from the
applied load using the ASTM equation) through the plane stress relation J3-D
= K2-D

2/E even though the constraint at this location is one of plane strain.
These results are in accord with those of Nakamura and Parks [2] who

studied the three-dimensional stress field near the crack front of a thin
elastic plate. They are also in general agreement with the results of two
independent studies [3,4] that appeared while this work was in progress. The
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former [3] includes FEM calculations for the SE(B) geometry. The latter [4]
addresses only the centre-cracked plate tension geometry, but many of the
results can be applied to the SE(B) case.

CONCLUSIONS

1. The 2-D finite element calculations in this work have generated values
of compliance and stress intensity factors in close agreement (within
0.2%) of values calculated using equations in ASTM standard E 1820
for the limiting cases of plane stress and plane strain for standard single-
edge bend SE(B) samples with a/W = 0.5 and 0.6.

2. Elastic 3-D finite element calculations for a standard B×2B SE(B)
sample with a/W = 0.5 show that the crack front is in a near-plane-strain
state over most of the specimen thickness, although the specimen as a
whole is in a mixed plane-strain/plane-stress state. In general, the out-of-
plane stress state is closest to plane strain in the regions of highest in-
plane stress gradient.

3. Crack lengths calculated from CMOD compliance are approximated
better by a plane-stress equation than a plane-strain one for a B×2B
sample with a/W = 0.5 and 0.6, in support of recommendations in ASTM
E 1820. However, for a B×B geometry with a/W=0.6, crack lengths are
approximated better by a plane-strain equation.

4. The stress intensity factor K3-D on the mid-plane of a B×2B SE(B)
sample with a/W = 0.5 estimated from the local stress field is higher
than that calculated from the equation for K given in ASTM E 1820.

5. The relation between the local 3-D elastic J-integral at the mid-plane
(calculated by the virtual crack extension method) and the stress
intensity factor K2-D calculated using a 2-D equation (J = K2/EΝ) is
approximated better using the plane stress relation (EΝ = E) than that for
plane strain (EΝ = E/(1- ν2)).

6. Physical crack lengths measured experimentally for B×2B samples with
a/W.0.5 by the nine-point-average technique agree well with crack
length estimates calculated from crack-mouth opening compliance
assuming a state of plane stress.
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