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ABSTRACT: A non-local critical plane model was proposed by Seweryn and Mroz [1,2]
and applied to prediction of crack initiation and propagation in brittle materials for
monotonic loading and also for cyclic loading, involving high cycle fatigue life prediction
for both in-phase and out-of-phase loading cases. In this paper, the crack propagation
model is considered assuming a constant length damage zone translating at the crack front.
The paper contains results of parametric analysis of model, particular overloading effect,
unstable crack growth condition, crack growth curves, shape of damage zone.

INTRODUCTION

Modelling of fatigue crack propagation has a great significance in fracture
mechanics. Accurate prediction of the rate of crack growth allows for de-
termination of service life of machine elements containing different type of
defects. Crack initiation in structural elements subjected to a cyclically
varying loading does not necessitate immediate renewing or replacement of
the element. In most engineering cases, it is sufficient to monitor crack
growth and replace the cracked element before the crack reaches its critical
length. This critical length can be estimated by using fatigue crack propaga-
tion models.

In present paper we shall develop a non-local critical plane model pro-
posed by Seweryn and Mréz [1,2] for prediction of fatigue crack propaga-
tion in uniaxial and multiaxial loading conditions.

CRACK GROWTH UNDER MODE I CONDITION

Let’s consider a plate of uniform thickness, see Figure la, with the edge
crack of length /, loaded by a cyclically varying stress o of range Ao and



mean value oy, = Ao/2. The material is assumed to be linear elastic, but ex-
hibiting a process or damage zone (2 of length dj ahead of the crack tip, see
Figure 1b. Damage growth occurs only in the damage zone and is specified
by the mean value of damage parameter o, affecting the critical stress ox.
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Figure 1: a) Plate with the edge crack, b) damage zone propagation.

The normal stress averaged in the zone (2 is

e 2K, (1)
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where K is the stress intensity factor for mode I.
The cycle of fatigue loading we divide into four stages, see Figure 2.
When stress in a cycle increases from zero, in the stage I there is no dam-

age accumulation as o, <o, (so Kj<Kjn) where o, denotes the treshold

stress and Kjy, 1s the treshold value of K. Let us note that both o, and Ky,
depend on the damage state, thus
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where o, and K, are the respective values for the undamaged material
and p is the material parameter.
In the second stage o, <o, <o,, the damage accumulation occurs in

the zone (2, according to the rule [1,2]
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where o, and K, are the critical values for the undamaged material and 4

and » are the material parameter.
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Figure 2: Consecutive stages of loading in one cycle.
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When o, reaches the critical value o, = o. and Kj=Kj, the crack

growth process occurs, so that the condition

On=0, K, =K

C

di>0 (5)
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is satisfied. The stable crack growth condition is

do, =do,,  dK, =dK, (o) 6)

Let us note that K; = Kj(o, ), so we have

_ K, 0K,
oo ol

dK, di (7)

In most cases the first term dominates as the crack growth value d//dN is small
and then dK, = M, \/ﬁ do where My depends on the geometry of the plate.

The damage accumulation during the stage III is decomposed into two terms
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where the first term is associated with loading increment and the second is
associated with damage zone propagation. Introducing ratio f = G: / 0': and

integrating Eq. 8 we obtain
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where @, and @, denote the damage values at the beginning and the end

of the propagation stage III.
The relation 9 specify the crack growth during one cycle, so that A/ = d//dN.
The consecutive stage IV corresponds to elastic unloading:

do, <0, dw,=0, dI=0 (10)
Using the double logarithmic scale, the crack propagation curves are

shown in Figure 3 for varying values of damage growth parameter
A=0.1,0.5, 1.
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Figure 3: Influence of parameter 4 on crack propagation curves.

The curves can be compared with the usual diagrams d//dN = f(AK;)
available in literature. It is seen that the crack propagation curves corre-
spond qualitatively well to experimental curves. When K tends to K., the



crack propagation rate tends to infinity, when K tends to K, , the propaga-

tion rate tends to zero.
Figure 4 illustrates the effect of overloading on crack propagation rate for
different values of 1.
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Figure 4: The effect of overloading on crack propagation rate: a) single
overloading cycle K, . /K,. = 0.9 and subsequent cycles K, , /K, =0.5.
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Let us note that when K| tends to K, (or o, tends to o. ), then the case

of brittle fracture occurs. Let us remind that the first term of Eq. 7 domi-
nates for stable crack growth, and the second term — for the unstable growth.
To formulate brittle fracture condition then, we can disregard the first term
of Eq. 7 because

oK, do << oK, d/, SO dK, ~ oK,
oo ol ol

di (11)

It is justified in the case of load control (then do/d/ > 0). When kinematic
control occurs, we have do/d/ <0 and it is necessary to consider the com-
plete form of Eq. 7.

Rearranging Eq. 6 we can finally obtain brittle fracture criterion in the
following form:

KlzK;;(l—En)f and  Kis pK;(l_E")%"
pA

ol —
d{l—a)n +(—)1—f }

(12)



Figure 5 shows the graphic illustration of this equations.
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Figure 5: Dependence of the critical crack length on K value for unstable
crack growth with varying values of 4 and p.

CRACK PROPAGATION
UNDER COMBINED MODE I AND MODE II CONDITIONS

The approach presented in the previous section can now be extended to the
case of biaxial loading with occurance of modes I and II. Then the mean

values ., (9), normal stress &, (3), shear stress 7., (9), critical stresses

o.(F) and 7.(9) depend on angle 4 in a polar coordinate system connected
with the crack tip, see Figure 6.

The stress distribution on critical planes at the crack tip according to as-
ymptotic solution for the linear elastic material is expressed as follows
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where K; and Ky are the stress intensity factors for modes I and II respec-
tively. Let us note that singular terms are only considered in Eq. 13.

The cycle of biaxial loading is divided into four stages similarly as in the
uniaxial loading case. There is no damage growth in the first stage and

(13)



stresses in the zone (2 are lower than the treshold values. Let us describe this
condition by the damage initiation function R, [3,4]:
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where Roo is the non-local stress damage initiation function and 7, is the
treshold value of shear stress depending on value of @, , namely

r0=r3(1—5n)” (15)

where 7, denotes the treshold value for the undamaged material.

Figure 6: Damage zone at the crack tip in a polar coordinate system.

The function R, can be expressed in the form of the elliptic condition for
o, > 0 and the Coulomb condition for g;, <0, thus
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where @ is the friction angle.

In stage II of loading we have the damage growth on the selected physi-
cal plane. This condition is described by the stress failure function R; which
can be expressed in form similar to Eq. 16. Because of singular stress field
we have to use the non-local stress failure function R, namely [5,6]:
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If the damage accumulation occurs on the physical plane with no crack
propagation we have
— R. —
f<Rs<1, f:E , dR,>0 (18)
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The damage growth @ (3) is now governed by the relation
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When stress failure function on the physical plane reaches the critical
value, the growth of the crack occurs, thus
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The stable growth takes place when

dR, = drR + 81_%0
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The damage evolution is induced by the load increment and crack incre-
ment:

dwn =dwm +dw.n = A dR, — dr (23)
1-f d,

Introducing effective length of the damage zone:
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crack growth condition takes the form of des = db.
In the stage IV we have:

dR, <0, dw,=0, dI=0 (25)

Assume that the stress failure function takes the form of the elliptic con-
dition for o, >0 and the Coulomb condition for o, <0 we shall present
results of calculation of the damage zone shape for varying parameters of
model. Figure 7a illustrates influence of parameter K;/K; on orientation and
shape of the damage zone. Let us note that Ny denotes number of cycles re-
quired to crack increment. In the Figure 7b we can see dependence of zone
shape on amplitude of loading for mode I (Ki/K; = 0).
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Figure 7: Damage zone shapes a) influence of parameter 7./o; for mode I,
b) influence of parameter Kj/Kj.

CONCLUDING REMARKS

The present paper provides the model of analysis of crack initiation and
propagation for monotonic and variable loading. The damage zone of con-



stant length was introduced with the averaged measures of stress and dam-
age within the zone. The zone is assumed to translate with the crack tip
when the critical propagation condition is reached.

The model proposed enables calculation of crack growth in the linear
elastic material, analysis of the effect of overloads on crack propagation
rate, specification of crack trajectory for arbitrary biaxial non-proportional
loading and specification of unstable crack growth regimes. The analysis
was referred to asymptotic stress fields near the crack tip. However, it can
be extended to more complex descriptions containing more terms of as-
ymptotic expansions or generated by the approximate methods. The analysis
can also be extended to three dimensional stress states and the associated
damage zones.

Let us remind that presented model considers only the translation of the
damage growth zone at the propagating crack tip. However it is possible to
propose an approach considering both: motion of the damage zone and
growth of this zone. This approach has been discussed in details in the arti-
cle [7].
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