
Intersonic Decohesion Along Weak Planes:
Experiments and Theory

A.J. Rosakis1 and Y. Huang2

1 California Institute of Technology, Pasadena, CA, USA
2 University of Illinois at Urbana-Champaign, Urbana, IL, USA

ABSTRACT: Recent experimental observations of intersonic shear crack propagation,
occurring in a variety of material systems, have rekindled interest in the study of the intersonic
failure phenomenon. Since the early 90s, engineers and scientists working in all length scales,
from the atomistic, the structural, all the way up to the scale of the earth’s deformation
processes, have joint efforts to study this unexplored area of fracture mechanics. The structure
of the analysis presented in the article emphasizes the cooperative and complementary manner
by which the experimental observations and the analytical and numerical developments have
complimented each other. The article first reviews early contributions to the theoretical
literature of dynamic subsonic and intersonic fracture and highlights the significant differences
between tensile and shear cracks. The article then uses direct laboratory observations as a
framework for discussing the physics and the mechanics of intersonic shear crack propagation
occurring in constitutively homogeneous (isotropic and anisotropic), as well as in
inhomogeneous systems, all containing preferable crack paths. Experiments and models are
used to discuss processes such as (1) shear shock wave formation, (2) large-scale frictional
contact and sliding at the crack faces, and (3) maximum attainable crack speeds and crack
speed stability.

1. INTRODUCTION

1.1 Terminology
Dynamic debonding or crack propagation result in the rapid creation of new
surfaces by the breaking of bonds in a previously undamaged material. A crack tip
(leading edge of a spreading displacement discontinuity) is termed supersonic,
intersonic, subsonic, or simply sub-Rayleigh if its speed is compared to the
characteristic wave speeds of the solid. In particular, for the simple cases of
isotropic linear elastic solids, a supersonic crack tip is defined as one moving
faster than the dilatational (or pressure) wave speed, cl, of the solid. Dilatational



stress waves are equivalent to pressure waves in a gas and feature materials
particle vibrations along the direction of travel of the wave. Similarly, an
‘intersonic’ crack is defined as one whose speed lies in the open interval
between the dilatational wave speed cl and the shear wave speed, cs, of the
solid, while a ‘subsonic’ crack is one whose speed is less than cs. Shear waves
feature particle motion perpendicular to their direction of travel and their speed,
cs, is typically less than twice the pressure wave speed. The exact ratio between
cs and cl depends on the Poissón ratio of the linear elastic solid [1]. In this
article, cracks propagating at exactly the dilatational wave speed will be
referred to as ‘pressure-sonic’ (p-sonic), while the ones that move at exactly cs
will be called ‘shear-sonic’ (s-sonic).

Since moving cracks result in the creation of new surfaces (free or
otherwise) it is perhaps not surprising that Rayleigh waves or other types of
surface waves, such as Stonely waves or generalized Rayleigh waves [1],
become important in their analysis. Rayleigh waves are constrained to
propagate along free surfaces with a speed, cR, which is typically equal to 87 to
95% of the shear wave speed of an isotropic linear elastic material. In this
article, cracks propagating at cR, will be referred to as ‘Rayleigh cracks’ while
the ones propagating below cR will be referred to as ‘sub-Rayleigh’. Finally, the
terminology ‘superRayleigh/subshear’ will be used to describe cracks that
propagate in the small speed interval between cR and cs.

1.2 Early Work on Dynamic Fracture
As evident from Freund’s [2] exhaustive monograph on the subject, the last 50
years of dynamic fracture mechanics theories have provided enormous insight
into the understanding of catastrophic failure of homogeneous (monolithic)
brittle solids, which is a class of materials that exhibit a linear elastic
constitutive response up to failure. Early research work on dynamic fracture
mechanics concentrated on materials and structures that are strictly
homogeneous in nature. In other words, it has concentrated on materials that in
addition to their homogeneous constitutive response they also possess strictly
homogeneous fracture toughness properties thus excluding the possibility of
weak paths or bonds of varying cohesive characteristics. Let us first consider
Mode-I (opening) cracks propagating in homogeneous, monolithic, linear
elastic solids under the action of remotely applied tractions on the boundaries.
For the sake of simplicity, let us also restrict our discussion to isotropic solids.



As the remotely applied loading is increased the crack tip is typically observed
to accelerate to higher speeds and it does so rather smoothly up to a speed of
about 30-40% of the Rayleigh wave speed cR. The exact percentage will, in
general, depend on the details of the material’s microstructure. At about these
speeds, a microbranching instability sets in whereby the crack tip speed tends to
oscillate and the crack follows a wavy path producing, as it attempts to branch,
increasingly rough fracture surfaces. The wavy crack path, as well as the
microbranching attempts, are intimately linked to a dramatic increase in size of
the process region; the region of microdamage near the moving crack tip. This
increase in microcrack population indicates a strong increase in fracture energy,
which is required to sustain propagation at these speeds [3,4,5,6,7,8,9,10,11].
Eventually the initial mode-I crack tip branches to two or more crack paths at
speeds that in a laboratory setting have never been observed to exceed 0.65 cR.
Indeed, the practical speed limit of mode-I crack growth, in purely
homogeneous solids, is well below the material’s Rayleigh wave speed. The
reason for that is the branching instability.

As summarized by Freund [2] and Broberg [12], early theories of Mode-I
crack growth have also wrestled with questions of limiting crack tip speeds
within the context of homogenous linear elasticity. By assuming that an
opening crack will propagate along a perfectly straight crack path, they have
examined its behaviour as the crack tip increases its speed. As the crack tip
speed increases, the energy flux into the crack tip decreases monotonically and
eventually it vanishes at cR. At even higher speeds no analytical solution can be
found with finite and positive energy flux into the tip making superRayleigh
crack growth unattainable within the confines of linear elastodynamics and
singular dynamic crack growth models [2,12,13,14]. Indeed, positive energy
flux into the crack tip is required to sustain cracking since crack growth
involves material separation, which is inherently an energy consuming process.
Hence, a necessary condition for crack growth is that energy should be supplied
from the outer stress field to the crack tip region. These theoretical studies
therefore conclude that the theoretical limiting crack tip speed for remotely
loaded mode-I cracks in brittle solids is cR. Such a prediction is substantially
higher than the practical speed limit set by the onset of the branching
instability.

The discrepancy is perhaps not so surprising if one takes a closer look at a
particularly restrictive assumption that is inherent in all theoretical treatments



of the subject. As has already been mentioned, all the theoretical models so far
have restricted the path of the crack tip. They prescribe a predetermined
straight-line path and in so doing they disregard the physical crack’s natural
tendency to oscillate and eventually branch at a specific propagation speed.
Thus, the analytical models approximate a very interesting, but nevertheless
very different physical situation; a situation that mimics the existence of a weak
plane of lower fracture toughness within the otherwise homogeneous linear
elastic solid. Along this path the crack is trapped and can propagate without the
possibility of activating the energy consuming process of microdamage
creation, without the freedom to follow a wavy path, and without the eventual
possibility of branching. The existence of such a plane (or line in a two-
dimensional setting) suppresses branching and, in essence, it allows the crack to
approach cR, as is predicted by the theory.

The above interpretation of the discrepancy has clear experimental support.
Specifically, Washabaugh and Knauss [15] fabricated weak planes in an
otherwise homogeneous material by bonding two identical plates of a brittle
polymer and then drove remotely loading mode-I cracks along the weak bond.
They reported mode-I crack tip speeds approaching the polymer’s Rayleigh
wave speed in the limit of vanishing bond strengthen thus verifying the
theoretical prediction.

The existence of weak fracture paths within solids significantly alters the
initial theoretical assumption of strict material homogeneity and makes such
systems very different than strictly monolithic solids. Although such materials
are still homogeneous, vis a vie their constitutive properties, they are not
homogeneous regarding their fracture resistance or their fracture toughness
response. This is a very important distinction to bear in mind and will become
even more important in the discussions throughout this article. In fact, as we
have already seen, for mode-I crack growth the limiting crack tip speed for a
strictly homogeneous (monolithic) solid is 0.65cR, or less, whereas for a solid
that contains weak crack growth paths this speed is the theoretically predicted
value of cR. The differences regarding the failure of these two distinct classes of
materials become even more enhanced when the possibility of shear dominated
mode-II failure is considered.

Let us now consider the situation of a strictly homogeneous elastic body
subjected to asymmetric dynamic loading conditions. A pre-existing stationary
crack in such a body, generally speaking, would develop mixed-mode



characteristics, which evolve up to the time, of crack extension. The ratio of
mode-I to mode-II, up to that time, will depend on the time history of loading
and on geometry [2]. At the instant of crack initiation, time at which the crack
tip ensues its movement throughout the body, the newly generated moving
crack tip will not grow straight ahead of the initial stationary mixed-mode
crack. Instead, the predominant theoretical belief is that it will kink and
propagate at an angle to the initial crack plane: an angle that depends on the
relative amount of the mode-mix (ratio of mode-II or mode-I) of its stationary
predecessor. What makes this process relevant to the present discussion is the
realization that this angle is also chosen to be such that the growing crack tip
always maintains purely tensile (mode-I) conditions at its tip [16,17,18].
Indeed, the newly created crack tip will curve continuously, and if necessary, it
will again kink abruptly to ensure that it remains a locally mode-I crack as it
decohers the homogeneous materials in local tension. The natural tendency of
growing cracks to propagate under strictly mode-I conditions in homogeneous
monolithic solids explains the lack of interest of early engineering researchers
in mixed mode, or mode-II, dynamic crack growth. In recent years this situation
has changed drastically since there is an increasing demand for specialized
lightweight, high-strength structures made out of inhomogeneous
(heterogeneous) solids. Such solids include structural composites sandwich
structures, bonded layered materials, as well as continuously graded solids.
Many of these materials are composed of brittle constituents possessing
substantial mismatch in wave speeds and are bonded together with weak
interfaces, which frequently serve as sites for catastrophic failure. Indeed, many
of these solids are designed for applications involving either anticipated or
accidental impact loading. The existence of interfaces in this new generation of
structural materials has refocused the attention of engineers to the problem of
dynamic crack growth along predetermined crack paths that are often identified
as the boundaries between the phases of heterogeneous solids. Forcing a crack
to propagate dynamically along a specific path and thus removing its freedom
to choose a path that will allow it to remain locally mode-I, results in a number
of very interesting phenomena, some of which will be discussed in this article.
In fact, mixed mode or mode-II growing cracks in inhomogeneous solids
exhibit behaviours that are very different than their mode-I counterparts. As we
will see in the following sections, such behaviours include the possibility of
intersonic and even supersonic crack tip speeds, as well as the likelihood of



large-scale dynamic frictional contact and dissipation of the crack faces.
Finally, they often feature the radiation of shock wave-like discontinuities from
the crack tips and from the ends of the contact zones.

In the present article, the reader’s attention is focused on shear dominated
cracks or debonding forced to propagate along weak planes at the interface
between linear elastic solids. For simplicity, the article’s point of view,
theoretical or experimental, will remain a two-dimensional one. A brief review
of the theoretical literature on the subject will first be presented. Then, the
article will concentrate on the question of the attainability of intersonic crack tip
speeds. The discussion will revolve around the presentation and analysis of
laboratory evidence of intersonic crack growth in different material systems
involving similar isotropic or anisotropic constituents that are separated by
weak interfaces. The discussion will not follow the proper chronological order
of research discoveries. Rather, it will center around two distinct classes of
bonded material systems: one involving identical isotropic constituent solids and
the other involving simple anisotropic solids. A brief discussion of bimaterial
systems involving highly dissimilar constituents will also be presented.

2. CRACK PROPAGATION IN WEAK PLANES BETWEEN TWO
CONSTITUTIVELY HOMOGENEOUS, ISOTROPIC SOLIDS

When the crack tip speed, v, is subRayleigh (0<v<cR) the asymptotic stress
field is square root singular (as it is in the equivalent mode-I problem). The near
tip stress components, ijσ , viewed from a local coordinate system which is
propagating with the crack tip at speed v, have the following form:
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where ),( 21 ηη are the coordinates of a point with respect to this moving
Cartesian coordinate system (the 1η -axis lies along the direction of crack
growth and the 2η -axis is perpendicular to the crack plane), r is the distance to
the moving crack tip, ijf (.,.) are known functions of crack tip speed v and



angular position θ , the indices ij have the range of 1,2, while the variables lα ,
and sα  are defined (Freund, 1990) as follows:
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where cl and cs are the longitudinal and shear wave speeds, respectively. As it is
evident from the general form of this solution, the stress tensor features a
square root singularity with respect to r and has a amplitude factor, d

IIK , which
in turn is called the mode-II dynamic stress intensity factor and is itself
expressible in the form:
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The factor )(vk above is a universal function of crack tip speed and S
IIK  is the

stress intensity factor of an equivalent stationary crack at the same
instantaneous location as the growing crack [2,12]. S

IIK  is independent of a
crack tip speed and it is an unknown function of external loading and geometry.
The function )(vk , on the other hand, is known. When 0=v  its value is equal
to 1, while it monotonically decreases to zero as Rcv = . The above asymptotic
solution allows the evaluation of the dynamic energy release rate, G , which
represents the energy flux into the crack tip singularity, per unit of new crack
area (per unit new area of sliding for mode-II cracks). This is given by:
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where E′  is an equivalent Young’s Modulus of the solid ( EE =′  for plane
stress, )1/( 2ν−=′ EE  for plane strain, ν  is Poissón’s Ratio) and )(vA  is an
increasing function of speed such that 1)0( =A  and ∞→)(vA  as Rcv →  [2].
By substituting equation (2.3) into equation (2.4) the dynamic energy release
rate G  (energy supplied into the tip) can now be expressed in the following
separable form:
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where )()()( 2 vkvAvg =  and is a function that exclusively depends on the crack
tip speed and the elastic material properties. At this point it is very important to
note that although )(vA  and )(vk  are monotonic functions that have opposite
behaviour as Rcv →  [ )(vA  becomes unbounded while )(vk  vanishes], the
combination )()()( 2 vkvAvg = , nevertheless, vanishes at this limit. In fact,

)(vg decreases almost linearly from 1 to 0 as the crack speed increases from 0
to Rc . The form of equation (2.5) and the properties of )(vg  have strong
physical consequences. They imply that the energy supplied to the crack tip
remains finite and positive throughout the subRayleigh regime and it vanishes
only as the crack speed reaches Rc . The above provide a strong indication that
subRayleigh cracks will have a hard time to smoothly propagate past Rc , unless
some other mechanism is identified which allows for such a transition. Indeed,
according to the steady-state model, if one now looks for singular crack growth
solutions at the small speed interval between Rc  and sc , the energy supplied to
the tip becomes negative thus excluding, in that interval, steady-state crack
growth [2,12]. Obviously, transient crack growth past that interval is not
excluded by the above discussion since so far the arguments are made on the
basis of a strictly steady-state model. In fact, the cracks may conceivably jump
discontinuously from one speed regime to the other without smoothly
accelerating through a forbidden region. Cracks may also nucleate
spontaneously and grow as intersonic cracks without ever being subsonic.
Considering the above, the quest for intersonic possibilities is still justifiable.

2.1 Early Models of Intersonic Shear Crack Propagation
Let us now turn our attention to the few early theoretical studies of intersonic
shear crack propagation. In particular, let us first consider a semi-infinite mode-
II crack propagating at a constant speed, v, along a predetermined straight-line
crack path which models a weak bond between two identical isotropic linear
elastic solids. This is a purely steady-state elastodynamic problem whose mode-
I counterpart has already been discussed in the introduction. This problem was
first analyzed by Freund [2,19] who concentrated on intersonic crack growth in



linear elastic solids and commented on the remarkable changes that the
asymptotic stress and particle velocity fields experience as the crack tip speed
crosses different possible speed regimes. Looking for solutions in the intersonic
crack tip speed interval )( ls cvc << , Freund [19] was able to reveal the
existence of a singular stress field that was drastically different than its
subsonic counterpart. The mathematical reason for the difference is the change
in nature of the governing differential equations of two-dimensional plane
elastodynamics; a change that occurs as the crack speed moves from the
subsonic to the intersonic regime. Indeed, whereas in the subsonic case the
steady-state problem involves two elliptic partial differential equations
governing the two scalar elastic potential functions, in the intersonic regime it
involves one elliptic and one hyperbolic equation. The elliptic equation governs
the dilatational potential while the hyperbolic one governs the shear potential.
This allows for the possibility of ‘characteristic’ lines, somehow related to
shear deformations. The physical meaning of such lines will become apparent
in the following discussion.

If one follows the above conventions and notation in relation to the subsonic
crack tip stress field, and if one employs a Cartesian coordinate system ),( 21 ηη
translating with the crack tip and oriented as shown in figure 1, the intersonic
asymptotic field for ls cvc <<  takes the form:
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where (.,.)ijl  is a known function of scaled angular position θ  and speed
through the relativistic functions lα  and sα̂  and (.,.)ijm  is a known function of
only speed. (.)H  is the Heaviside step-function and q is the singularity
exponent, which is a function of crack tip speed given by:
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The variable lα  is defined in equation (2.2) above while sα̂  is given by:
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The coefficient ∗
IIK , which represents a common amplitude factor to all stress

components, is called the intersonic mode-II stress intensity factor and it is
equivalent to d

IIK  of the subsonic solution. This amplitude is not determined by
the asymptotic solution. Rather it depends, in general, on the transient loading
and on geometry [2].

Figure 1: An intersonic mode-II crack confined to grow along a straight-line
path in an isotropic solid. The illustration shows the crack tip coordinate system
and two Mach lines radiating from the crack tip.

From the Heaviside function that appears in equation (2.6) we clearly see
that the asymptotic solution predicts two traveling stress discontinuities (Mach
waves) attached to the shear crack tip and inclined at an angle

)ˆ/1(tan)/(sin 11
ss vc αξ −− ==  to the crack faces as evident from by the



argument of the step function. These stress discontinuities are schematically
indicated in figure 1. The stresses are singular not only at the crack tip, but also
along the two Mach fronts with the same order of singularity as that of the
crack tip. That means that the crack tip singularity is ‘radiated’ out along the
Mach lines which are ‘characteristics’ arising from the hyperbolic nature of the
partial differential equation that governs the shear elastic potential in the
intersonic regime. Across the Mach front, the normal stress and the normal
particle velocity perpendicular to the front are continuous, whereas the shear
stress and tangential velocity suffer an infinite jump. Hence these fronts are
shear Mach waves. Another major difference of intersonic crack growth from
the subRayleigh crack behavior lies in the nature of the stress singularity
exponent q. In the intersonic regime the singularity exponent is not equal to 1/2.
Instead, it is a strong function of crack tip speed and its variation is plotted in
figure 2 for both the plane stress and plane strain cases and for a value of
Poissón’s Ratio ν  of 0.34. The figure shows that q increases monotonically
with speed from a value of 0 at sc  to a value of 1/2 at a speed of sc2  and
thereafter, as the crack approaches the dilatational wave speed lc  it decreases
monotonically to 0. The fact that the strength of singularity is drastically
reduced compared to the classical square root behaviour of the subRayleigh
regime has direct consequences to the energetics of crack growth. In fact, the
strongest consequence of that is the fact that dynamic energy release rate G, or
equivalently the energy supplied to the shear crack tip per unit slip area
increment, is identically zero in the intersonic interval except at one distinct
crack tip speed. This speed is equal to sc2  and corresponds to a value q = 1/2.
At that speed, the intersonic crack tip recovers the square-root singular nature,
and as the functions )ˆ,( slijm αα  in equation (2.6) vanish, the shear Mach waves
disappear. In addition, the energy supplied to the tip is no longer zero and has a
positive finite value equal to:
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whereµ is the shear modulus of the isotropic linear elastic solid [19].



Figure 2: The variation of the mode-II crack tip singularity exponent with
crack speed.

The implications of the above observations for the ability of a shear crack to
propagate intersonically have first been discussed by Freund [19] and later on
by Broberg [13,14]. As they point out, within the confines of the singular
elastodynamic analysis discussed above, a shear crack can definitely propagate
intersonically at the interesting crack tip speed of sc2 , where finite and
positive energy flux is available to it. In all other intersonic speeds the situation
remains uncertain. At such speeds, G is identically zero which, although is not
as prohibitive as is the negative value predicted for the superRayleigh/subsonic
interval, it is, nevertheless, discouraging from the point of view of singular
elastodynamics.

Following the above discussion, it is obvious that the theory does not
exclude intersonic shear crack growth, as it clearly did for the mode-I discussed
in the introduction. However, the theory is unable to conclusively predict
whether the occurrence of such a phenomenon is likely or even possible. As



emphasized by Freund [2,19] and Broberg [13,21,22] in most of their work on
the subject, the idealization of the crack tip process zone to a point-size
dissipative tip (the singular crack tip), results in a physically unrealistic
situation whereby the requirement of a positive energy flux to the crack tip is
met only at sc2 . As a consequence, non-singular, cohesive zone models in
which the crack tip region is permitted to assume a finite extent might allow for
non-zero flux throughout the intersonic regime. In addition, the possibility of
theoretically addressing the problem of the smooth crossing of the forbidden
superRayleigh/subshear interval requires the relaxation of the steady-state
assumption. In so doing, there is some hope that a transient mechanism which
would facilitate the transition from subRayleigh to intersonic, could be
identified. Obviously, the possibility of achieving both such goals analytically
is slim, whereas early numerical studies have indeed managed to provide us
with the means of analyzing such issues.

In perhaps the first transient analytical study of shear crack propagation ever
reported, Burridge [23] employed a simple form of frictional, cohesive zone
model to analyze the problem of a mode-II crack-like entity propagating along
an interface between two identical half spaces. The crack was allowed to grow
in a self-similar manner from zero initial length along the interface. The two
half spaces were subjected to uniform normal and shear tractions and were held
together by Coulomb friction. In effect, this problem represents the limiting
case of a shear crack of zero cohesive energy together with a finite cohesive
strength.

For cracks propagating with high subRayleigh speeds, Burridge was able to
identify a peak in shear stress propagating ahead of the main crack. This peak
was observed to increase in magnitude as the main crack tip speed approached

Rc . He then postulated that if this stress peak exceeds the limiting static friction
then a secondary micro-crack may nucleate and may grow ahead of the main
crack. The main crack may continue to move at the Rayleigh wave speed,
provided that the cohesive strength is sufficiently high. Otherwise it joins up
with the microcrack and the resulting combination may accelerate and
propagate at a speed close to lc . By using a finite difference scheme, Andrews
[24] analyzed the transient problem of the symmetric expansion of a mode-II
crack propagating along a prescribed path under the action of a uniformly
applied remote shear stress. Rupture at the crack faces was resisted by a slip



weakening cohesive zone of the type described by Ida [25] and by Palmer and
Rice [26]. Andrews collaborated Burridge’s analytical prediction and he found
that the expanding shear crack accelerates to speeds close to Rc  and induces the
nucleation of a secondary slip region propagating just in front of it. This was
found to be possible provided that the limiting static friction was not high
enough. This secondary crack zone coalesces with the main crack and the
combination was found to propagate at about speeds 1.5 sc ; a value that is

surprisingly close to the special speed of sc2  described by Freund’s analysis
[19]. His numerical observations together with the study by Burridge [23]
describe one possible mechanism which would allow a subsonic crack to cross
the forbidden speed regime between Rc  and sc . For the remainder of this
article this mechanism will be referred to as the ‘Burridge-Andrews
Mechanism’.

Andrews [24] pointed out that for intersonic cracks, where the crack tip
singularity is less than 1/2, a non-zero fracture energy is supported only when
the stress drop is not abrupt, i.e. when the crack tip region is allowed to have a
finite extent. Das and Aki [27] used a boundary integral method to study the
transient mode-II crack expansion in an infinite, linear elastic isotropic solid
subjected to remote shear stress. The crack tip in this study was modeled as a
structureless point and dynamic friction was assumed to act along the crack
faces. Using a critical stress criterion, they confirmed the numerical results of
Andrews [24]. The subsequent numerical studies by Day [28] and Johnson [29],
who examined various aspects of intersonic crack, also confirmed the
importance of the stress peak traveling with the shear wave speed in facilitating
the subRayleigh to intersonic transition. The Burridge-Andrews Mechanism
was found to be activated in a variety of situations and thus became a widely
accepted interpretation. The stability of a semi-infinite steady-state mode-II
crack, confined to propagate along a straight-line path under the action of a
point load at a finite distance from the crack tip was first studied by Burridge et
al. [30]. This work assumed the presence of a slip-weakening cohesive zone
resisting crack advance and concluded that the crack is inherently unstable in
the entire subRayleigh regime. When propagating intersonically, the crack was
found to be unstable in the open speed interval between sc  and sc2  and



stable when v lies in the closed interval between sc2  and lc . The open speed
interval between Rc  and sc  was confirmed to be forbidden.

Extensive analytical contributions into the cohesive modeling of shear crack
have been presented by Broberg [20,31]. He considered the problem of a self-
similar intersonic mode-II crack expanding symmetrically from zero initial
length under the action of a remote uniform shear stress. By assuming a
Barenblatt process region he was able to show that the energy supplied to the
crack tip, G, remains positive and finite during intersonic crack growth. At the
same time, he was able to demonstrate that G depends on the extent of the
process zone as:

qaLavfG 212 )/)(/)(( −
∞= µτ (2.10)

where L is the length of the process zone, a is the crack length, )(vf  is a
complicated function of a crack tip speed and )(vq  is the speed-dependent
crack tip singularity shown in figure 2. The dependence of G on aL / , for the
limit of a vanishing normalized process zone length, 0/ →aL , shows that the
energy supplied to the crack tip vanishes at all intersonic speeds with the
exception of scv 2=  which is the speed for which 2/1=q . This observation
is consistent with the results of the purely singular (structureless) analysis of
Freund [19] who predicted G to be identically zero at all speeds with the
exception of scv 2=  where G remained finite and positive. For cases when
the process zone length may not be neglected, numerical evaluation of equation
(2.10) reveals that the energy flux increases from zero at scv =  to a maximum

value at a speed somewhat lower than sc2  and then vanishes again at lcv = .

The exact location of this maximum is dependent on aL /  and moves to sc2
as 0/ →aL . In expanding the above analysis, Broberg also considered the
requirement of a constant critical fracture energy, cG , balancing the available
energy flux. In so doing, he effectively imposed a criterion for intersonic
growth. He showed that under these conditions the crack would accelerate from
a speed close to that corresponding to the maximum value of G all the way up
to the dilatational wave speed lc . In a later contribution he also solved the
transient problem of an accelerating semi-infinite intersonic mode-II crack [12].



2.2 Laboratory Evidence of Intersonic Shear Crack Propagation
The experimental results of this section can be better understood with the above
discussion in mind. The theoretical models of intersonic shear crack
propagation presented in section 2.1 illuminate the crucial points that are
central to our understanding of the experimental observations.

The first point involves the identification of ‘permissible’ and ‘forbidden’
crack tip speed regimes during dynamic shear crack propagation. In this regard,
the small speed regime between Rc  and sc  is identified as being forbidden
while purely subsonic and intersonic crack propagation is theoretically
plausible.

The second point is related to the identification of a mechanism that could
allow an intersonic crack to transit through the forbidden regime. Here two
possibilities seem to emerge. A subsonic crack may induce secondary intersonic
cracks by using the Burridge-Andrews Mechanism or may be ‘born’ as
intersonic. In both cases the crack circumvents the issue of having to cross the
forbidden zone as a single entity.

The third point is related to the significance of the curious speed of sc2
that seems to repeatedly appear in many of the models discussed above. This
speed is related to the energy supply (or flux) into the crack tip and has been
linked to issues of favorable crack growth speeds and crack tip stability within
the intersonic regime. It is also the speed at which conditions near the crack tip
assume a pseudo subsonic square root singular form. Although the special
significance of this speed is somehow de-emphasized by Broberg’s introduction
of cohesive strength (introduction of structure into the tip), this speed
nevertheless persistently re-appears in relation to the laboratory and field
observations to be described later. This special speed also re-appears
prominently in relation to the analysis of dynamic rupture of highly dissimilar
bimaterials. In this new setting, however, its physical meaning derives from
issues associated with dynamic crack face contact.

The first conclusive evidence of intersonic shear crack growth in a
laboratory setting was reported a few years ago by Rosakis et al. [32]. These
experiments were designed to mimic the primary assumptions featured by all of
the theoretical models described in section 2.1. Their basic purpose was to
investigate whether intersonic crack growth can be observed in a highly
controlled environment thus resolving, once and for all, the debate concerning
the attainability of intersonic shear crack tip speeds. For this purpose, a straight-



line weak path was introduced ahead of a prefabricated notch tip in the form of
a bond between two identical pieces of homogeneous isotropic material. The
bonding process was carefully chosen so that the constitutive properties of the
bond were very close to those of the bulk material and so that the bond width
was less than 30 µm  [32]. A material system was thus constructed which,
although not strictly homogeneous or monolithic, was homogeneous with
regard to its linear elastic constitutive properties. However, the fracture
toughness or rupture strength of the bond line was kept lower than the
constituent pieces so that the material was inhomogeneous with regard to its
fracture properties. The functionality of the weak bond was there to ensure the
directional stability of a propagating shear crack tip, following its initiation
from the asymmetrically loaded prenotch. As the issues discussed in the
introduction clearly suggest, the bond is there to also mimic the theoretical
assumption of a predetermined straight-line fracture path inherent in all models
previously mentioned.

The geometry and relative dimensions of the specimen are shown in the
insert of figure 3. Dynamic photoelasticity was chosen as a diagnostic method
for capturing the stress field near the propagating fracture because of its
sensitivity to maximum shear stresses. At this point it should be recalled that
according to Freund’s asymptotic solution [see equation (2.6)], shock waves
featuring strong shear stress discontinuities are anticipated if a crack is captured
to propagate intersonically. Two identical plates of Homalite-100, a brittle
polyester resin that exhibits stress induced birefringence, were bonded together
and the notch was machined at one edge along the bond line. In certain cases
the bonding agent was polymerized in situ and cured appropriately to produce
variable bond strengths, whereas in other cases, the bond was created by
temperature-enhanced surface sintering. This later procedure does not involve
any bonding agent. With such a method, there was no ambiguity regarding the
constitutive homogeneity of the resulting bonded structure. The dilatational
wave speed of Homalite-100 is smcl /2187= , the shear wave speed is

smcs /1255= , while smcR /1155= . It should be noted that Homalite-100 is
mildly rate sensitive and that these numbers correspond to a strain rate of 103s-1.
The equivalent quasistatic values for the wave speeds are approximately 15%
lower. The tensile strength of bulk Homalite-100 is approximately 35MPa,
while the shear strength 0τ of the bond was approximately 14MPa.



Figure 3: The dynamic photoelasticity set-up. A bonded Homalite/Homalite
specimen is photographed by a high-speed camera (2x106 frames/s) as it is
subjected to asymmetric impact by a projectile fired by a gas gun.

The specimen was subjected to asymmetric impact loading through a
cylindrical steel projectile whose speed ranged from 8m/s to 40m/s. A steel
buffer was bonded to the specimen at the impact site to prevent shattering and
to induce a planar loading wave front into the Homalite plate. The compressive



longitudinal wave loads the notch which is initially in a predominantly shear
mode provided that it is wide enough to prevent the transmission of stress
waves into the top half. It is exactly for that reason that a notch was inserted
into the specimen edge. If, instead, the specimen was directly hit below the
bond line, a substantial opening component would be introduced, potentially
decohering the interface in a mixed-mode fashion. The dynamic stress field
produced by the impact was recorded by high-speed photography used in
conjunction with a classical photoelastic set-up as shown in figure 3. The
resulting high-speed sequence of photoelastic fringe patterns are contours of
constant maximum in-plane shear stress maxτ  governed by the stress optical law:

,/2 21max hnFσσστ =−= (2.11)

where σF  is the material’s stress optical coefficient, h is the specimen
thickness, 21,σσ  are the principal stresses and η  is the isochromatic fringe
order. For Homalite-100, mKNF /6.22=σ .

The first experiments discussed in this article correspond to low projectile
impact speeds of 20m/s. Figure 4 is a high-speed sequence of isochromatic
images showing the crack initiation process. The notch is visible on the left side
of the circular field of view while the prefabricated weak plane is shown as the
horizontal dark line. Following the impact, the initial loading waves produce a
predominately shear loading state that spreads throughout the specimen. Prior to
these waves reflecting from the specimen boundaries and arriving back at the
notch tip, a kinked crack is observed to initiate from the notch and to propagate
along a straight-line path at approximately 70° to the weak plane. The kinked
crack is a mode-I crack, which follows the path that would ensure that local crack
tip deformations remain symmetric as the crack grows into the upper half of the
specimen. Indeed, as discussed in section 1.1, this is an expected behaviour when
a notch within a strictly homogeneous solid is subjected to pure mode-II loading.
For such a case, the analysis by Hutchinson and Suo [18] predicts a kink angle of
72°, which is very close to the experimental observation. Such a result, however,
is still puzzling. The solid is not strictly homogeneous since it contains a weak
horizontal path that is placed there intentionally in order to capture and guide the
fracture thus preventing it from kinking off to an angle. The existence of such a
bond is obviously ignored by the failure sequence in this experiment and so the
question remains of whether it is ever possible to propagate a shear crack under
such conditions. There are three obvious ways to encourage the crack to initiate



in shear and to propagate along the bond line. The most obvious one is to
intentionally decrease the bond strength even more. The second one is to impose
a far-field hydrostatic stress state that would tend to discourage any mode-I
opening cracks from forming. The final, and perhaps the simplest one to
implement, is to increase the amplitude of the dynamically applied shear loading
by simply increasing the impact speed of the projectile.

Figure 4: A sequence of isochromatic fringe patterns showing the progression of
failure in a bonded Homalite/Homalite specimen subjected to low speed impact.
A kinked mode-I crack is shown propagating at 72° off the horizontal weak bond.



Figure 5: Isochromatic fringe pattern around a shear crack initiating from a notch
and propagating along a weak plane in Homalite-100. (a-c) Field of view centered
20mm ahead of the notch tip. (d-f) Field of view centered 63mm ahead of the field
of view.

Figure 5 shows what happens when the impact speed is increased from
20m/s to 27m/s, which, at first glance, seems to be a moderate change. The
bond strength was left unchanged. The time elapsed after impact, as well as the
crack tip speed, is shown in each frame. This selected sequence of images is
drawn from two nominally identical experiments differing only by the position
of the field of view. In the first three frames (a-c), the field of view of 50mm in
diameter is centered on the weak plane 20mm ahead of the notch tip. In figure
5(a), the stress waves that result from the impact site and diffract around the
notch tip can be observed. As they do so they simultaneously build up, at this
location, the stationary stress concentration. In figure 5(b), a concentration of
fringes is seen to move along the weak plane at a very high speed. This fringe
concentration represents the moving shear crack tip. The next frame features a
discernable increase in fringe (and thus stress) intensity around the tip and, in
addition, it features the formation of visible damage trailing behind the moving



shear crack tip. The damage is confined to the upper side of the weak bond
plane. In the next three frames (d-f), the field of view is centered 63mm ahead
of the notch tip and, as a result, the initial notch is no longer visible. Figure 5(d)
shows a crack entering the field of view from the left. The shape of the
isochromatic fringes around this crack has changed, compared to its shape in
the previous sequence, dramatically. In the following two frames, two lines
radiating from the moving crack tip are clearly visible. These two lines are
intense concentrations of fringes across which the isochromatic pattern changes
abruptly and are clearly reminiscent to shock waves attached to the tips of
objects moving supersonically in gases. These are clearly visible in the
magnified pattern displayed in figure 6.

Figure 6: Enlarged view of the isochromatic fringe pattern around an intersonic
shear crack moving along a weak plane in Homalite-100. A shear shock wave
(Mach wave) is clearly visible.



The abrupt changes in fringe density across the two lines are clear
indications of the presence of shear stress discontinuities and the two lines are
two traveling shear Mach waves emanating from the crack tip as this
propagates along the interface. Their existence and inclination provides clear
proof that the crack tip speed has indeed exceeded the shear wave speed of
Homalite-100 and is well within the intersonic regime. The angle ξ , which the
Mach waves make with the crack faces, is related to the crack speed through

)/(sin 1 vcs
−=ξ  and can be seen by inspection to be close to 45°. Such an

angle corresponds to a crack tip speed v close to the curious speed of sc2  that
has been extensively discussed in section 2.2. In addition, a close look at the
last two frames of figure 5 reveals isochromatic fringe patterns whose
similarities indicate that the propagating crack at this stage may be approaching
steady-state conditions. The insights obtained by visual inspection are
confirmed by more accurate analysis of the experimental results. Typical crack
tip speed histories for two identical experiments varying only in the position of
the field of view are shown in figure 7. The crack tip speeds are determined
using two methods. The first method involves fitting a second order polynomial
to every three successive points in the crack length history and then
differentiating it with respect to time in order to provide the speed of the mid-
point. The results are displayed in figure 7(a). In the second method, the angle
of inclination of the Mach waves to the crack faces are measured and the ratio

scv /  is obtained using the Mach angle formula discussed above [i.e.
1)(sin/ −= ξscv ]. This method is limited to frames where the Mach waves are

clearly visible. The results are displayed in figure 7(b). From figure 7(a) we see
that, within experimental error, the initial crack speed is close to the shear wave
speed of Homalite-100 beyond which it accelerates throughout the intersonic
regime. The acceleration featured during this part of the process is of the order
of 107g’s, where g is the acceleration of gravity. The maximum speed recorded
is very close to the dynamic value of the dilatational wave speed of Homalite-
100. After that point the crack tip decelerates gradually and ultimately reaches a
steady-state speed that is slightly higher than sc2 . This result is indeed
consistent with the visual observation of Mach waves angles inclined at
approximately 45° to the crack faces.



Figure 7: Shear crack tip histories. (a) Crack speed obtained by differentiation
of the crack length record. (b) Crack speed inferred from Mach angle
measurements.

The first experimental observations of intersonic crack propagation can now
be integrated into the discussion of the early models of shear crack growth
presented in section 2.1. To that effect, several points are appropriate.

The shear crack that started growing from the tip of the notch was ‘born’
intersonic and remained within the intersonic regime throughout our window of
observation. Its ability to propagate at all speeds within this regime has
provided the first unambiguous laboratory evidence that intersonic crack



growth is a physical possibility. Evidence that is consistent with the predictions
of the early theoretical studies.

The crack was generated at the location of an artificially seeded singularity
(stationary notch tip) whose purpose was to store energy that would induce
intersonic growth. As a result, the crack was never subsonic and it never
entered the forbidden crack tip speed regime between cR and cs. This in turn
provides clear evidence of how the Burridge-Andrews Mechanism can be
circumvented.

The crack tips rapid acceleration from cs to cl and its subsequent slow
deceleration to an almost steady-state value just above sc2  illustrates the
special significance of this particular crack tip speed. It is noteworthy that the
time of this deceleration is coincidental with the arrival of the first unloading
waves, which signals the disassociation of the projectile from the impact area.
This is equivalent to the end of the loading pulse. It is very interesting to note
that although the crack tip is largely unloaded by the arrival of this information,
it still persists in propagating at a steady-state speed close to sc2  instead of
abruptly arresting as a subsonic crack would tend to do under similar
circumstances. To comprehend this behaviour one should perhaps recall that the
energy supply into the tip at this particular speed is very close to its maximum.
This has been pointed out in relation to Freund and Broberg’s works outlined in
section 2.1. The only possible discrepancy with the predictions of the cohesive
theories discussed by Broberg [12] is related to the observation that the crack
always tends to settle at a steady-state speed just above rather than just below

sc2 . As we will see in the following section, this discrepancy can be
explained. In particular, Broberg considered the case of self-similar crack
growth of a zero length crack whose two crack tips propagate symmetrically. In
contrast to this model, our experimental situation involves the extension of a
single crack tip that reaches as it expands nearly steady-state conditions.
Therefore, a steady-state cohesive model of an intersonically moving semi-
infinite crack may be much more appropriate for detailed comparisons with the
experimental results.



Figure 8: Synthetic isochromatic pattern constructed on the basis of Freund’s
1979 singular solution [44] for an intersonically growing mode-II crack.

It is instructive to qualitatively compare the results of the experiments with
the analytical predictions of Freund’s [19] singular steady-state solution of an
intersonically moving shear crack described in section 2.1. The comparison can
be achieved when the analytical expressions for the asymptotic stress field of
such a crack, given here in equation (2.6), are substituted into equation (2.11),
governing photoelasticity. By using the experimental values for the fringe
constant of Homalite-100, a thickness equal to that of the specimen and a best
fit for the value of the intersonic stress intensity factor )mMPa2( q

IIII KK =∗∗ ,
a synthetic isochromatic fringe pattern is constructed. This pattern is shown in
figure 8 and corresponds to a crack tip speed of 1.47cs. In this form, Freund’s
solution is directly comparable to the experimental isochromatic field shown in
figure 6, which also corresponds to approximately the same speed. The two
patterns are in very good agreement with respect to the prediction of the two



shear Mach waves, their inclination to the crack faces, and the overall
qualitative shape of the fringes. However, ahead of the tip, the experimental
fringe pattern is distorted by the stress field generated by the loading pulse.
Behind the shock waves the experimental pattern is considerably more noisy
than its theoretical counterpart. Possibly such a difference is due to the
extensive frictional contact of the shear crack faces and the associated creation
of tensile micocracks that result from this contact. Perhaps the most significant
difference is in the structure of the Mach waves emitted from the tip. In the
experiment, the Mach waves are not simply two sharp lines as they are in the
theoretical solution. Instead, they seem to have some width and structure that is
not modeled by the singular solution. This, in turn, suggests that an intersonic
mode-II steady-state crack model incorporating a shear cohesive zone of finite
extent, is required to model the structure of the Mach waves, as well as the
crack tip process zone. The incorporation of a shear cohesive zone will also
provide a mechanism for modeling the creation of tensile microdamage trailing
the shear crack tip.

A closer look at the crack faces, as these appear in figure 5(c), reveals the
existence of damage created on the top side of the specimen as the shear crack
tip ruptures the weak bond. Figure 9(b) shows a post-mortem photograph of the
upper half of the specimen in a location near the notch tip. The area in the
photograph corresponds to the one enclosed by the dashed rectangle highlighted
in figure 9(a). The photograph shows a series of short opening (mode-I) cracks,
parallel to each other and steeply inclined to the main shear crack path. These
secondary microcracks are observed all along the main crack path and are only
confined to the upper half of the specimen. Their length varies from a few
microns to a few millimeters. To study the statistical variation of the inclination
angle of these cracks to the vertical, a number of broken specimens were
assembled and inspected following each experiment. The results are shown in
figure 9(c), a figure which shows the variation of crack angle with frequency of
occurrence (number of secondary cracks inclined at the same angle to the
vertical). It is found that the angle of inclination varies roughly from 8° to 13°
with an average value of approximately 10.6°. Within the measurement error of
±1°, no strong correlation was found between the secondary crack angle and the
main shear crack tip speed. The initiation, propagation, and arrest of these
cracks can also be observed in real time by scrutinizing the high-speed
isochromatic images at the vicinity of the crack faces.



Figure 9: Mode-II microcracks formed on the tensile half of the specimen during
intersonic shear rupture. (a) Schematic illustration of the specimen and the
microcracks (not to scale). (b) Magnified, post- mortem view of the specimen
near the rupture path. (c) Microcrack inclination angle plotted versus frequency
of occurrence.

A typical photograph illustrating this phenomenon is shown is figure 10(a). A
series of symmetric shadow spots mark the location of the tips of these growing
mode-I microcracks as they propagate a finite distance into the upper half of the
specimen. As indicated in figure 10(b), the centers of these shadow spots fall
onto a straight line inclined at an angle 23~α ° to the crack faces. The initial
speed of these microcracks can now be estimated by: (i) using α , (ii) by using
the inclination ∗θ  of these cracks to the vertical, and (iii) knowing the speed of
the main shear crack. The cracks are found to be subsonic and their average
speed was approximately equal to 0.6cS. The symmetric nature of the shadow
spots is a clear indication of the tensile (mode-I) nature of the microcracks. By



extending the line passing through their tips (centers of shadow spots), it can be
readily seen that these cracks nucleate at a small distance behind the main shear
crack. Hence, the formation of these cracks is not akin to the typical branching
phenomenon (see section 1), which involves branches or kinks emanating
directly ahead of the moving crack tip. In fact, to explain the present
phenomenon, the stress state just behind an intersonically moving crack at
locations adjacent to the cracks faces, should be considered.

Figure 10: The mechanism of tensile microcrack formation. (a) An isochromatic
image illustrating the location of the microcracks in relation to the main shear
rupture. (b) An illustration of the stress state on the shear crack faces, providing
an explanation of microcrack’s forward inclination.



Examination of Freund’s intersonic singular solution at the appropriate
locations [see figure 10(b)] reveals that the direct stress ijσ  acting parallel to
the crack faces is indeed tensile on the top half of the specimen and is
compressive on the bottom. This explains why the opening microcracks are
observed only in the tensile half of the specimen. However, Freund’s analysis
involves the assumption of traction free crack faces, an assumption inconsistent
with the existence of the inclination angle that the microcracks make with the
vertical. Specifically, this inclination can only be explained in terms of the
presence of a more complex stress state at the immediate vicinity of the shear
crack faces. As has already been seen above, it is likely that the crack faces are
in contact and subsequently are undergoing frictional sliding resulting in a
biaxial stress state at their initiation site. However, most of these cracks seem to
originate only a couple of millimeters behind the main crack tip and in the
absence of overall static normal compression. As a result, a simple way to
include frictional stress at the microcrack initiation site is to introduce a shear
cohesive stress zone of finite size translating with the main crack tip. Indeed, in
the following section we would introduce a rate dependent line cohesive zone at
the intersonic tip to explain the inclination of these secondary cracks to the
vertical. Figure 10(b) shows an illustration of the cohesive region near the shear
crack tip, which explains our interpretation as to the origin and directivity of the
secondary tensile cracks. The main intersonic shear crack is propagating with a
line cohesive zone of length L in front of it. The secondary microcracks
originate on the top of the cohesive surface. The stress state at that location is
two-dimensional. It features a tensile direct stress σσ =11  parallel to the
interface, as well as a shear stress τσ −=12  equal to the local value of the
cohesive tractions resisting shear rupture )0,0( >> τσ . With such biaxial state
of stress, the maximum tensile principal stress, 1σ , acts on a plane (dashed line)
which is inclined at a positive angle ∗θ  to the vertical which is consistent with
the observed orientation of the microcracks. The driving force leading to the
growth of these cracks is provided by the near tip field of the intersonic crack.
As the intersonic crack moves further away from the initiation site of a
particular microcrack, the driving force acting on it falls. This leads to its
eventual arrest a few millimeters away from the decohered shear crack faces.



2.3 The Velocity Weakening Model of Intersonic Shear Crack Propagation
In an attempt to introduce some structure into the tip of a dynamically growing
shear crack, the following section discusses the results of a rate sensitive
cohesive zone analysis (Samudrala et al., 2002).. This mode-II crack is
confined to propagate steadily along a straight line simulating the weak bond
between two homogeneous and isotropic half spaces. The crack propagates in
the intersonic regime.

Figure 11: A schematic illustration of the shear cohesive zone and the
coordinate system at the tip of the growing shear crack along a weak path.

As shown in figure 11, a shear cohesive zone of length L is located ahead of
the crack tip and moves with it at an intersonic speed v. A shear cohesive zone is
a line ahead of the tip within which the shear traction decays from some initial
value (the initial bond strength necessary to initiate slip) to zero. The intention of
this section is to show how an appropriate choice of a cohesive zone model may
reconcile some of the inconsistencies observed when classical models of shear
crack propagation are compared to the experiments. These inconsistencies
include issues relating to the finite structure of Mach waves, the formation of
secondary tensile microfractures trailing the shear crack tip, as well as issues
pertaining to crack tip stability and to the identification of favorable crack tip
speed regimes. Cohesive zones of the slip weakening type have been extensively
used in the past to model shear ruptures [23,24,25,34]. Slip-weakening and slip-
rate (or velocity) weakening models are extensions of cohesive zone models
initially introduced for tensile cracks on one hand by Dugdale [35], to model
plastic yielding in ductile materials, and on the other hand by Barenblatt [36] to
model inter-atomic cohesion in brittle solids. A slip-weakening and a slip rate-



weakening law relates the shear strength of a cohesive surface to the local slip
or to the local slip rate, respectively. Ahead of a propagating crack tip the
strength decays from some relatively high peak value to zero as the physical
crack tip decoheres the cohesive surface.

As was mentioned above, intersonic crack growth in our laboratory
specimens was accompanied by crack face contact and sliding. Such evidence is
provided by the forward inclination of the microfractures originating at the
crack faces. The slip rate at this location is expected to be large, ranging from
1m/s to 10m/s. The limited data available on dynamic sliding at such high slip
rates [37,38,39] also shows that the steady-state frictional stress drops with
increasing slip rate. The above dynamic friction experiment motivated our use
of a velocity weakening shear cohesive law. In that law, the dependence of
sliding friction on local ‘state’ was neglected.

Rate dependent cohesive relations have been used in the past for modeling
subsonic mode-I crack growth in elastic-viscoplastic material behaviour by
Glennie [40] and by Freund and Lee [41]. In these studies, however, the
cohesive law models a rate strengthening behaviour, which is characteristic of
metallic solids. This in turn provides a very different mechanism of crack tip
dissipation than the one of interest to the present study. The simple rate
dependent cohesive law employed here relates the cohesive shear traction, τ , at
any point within the cohesive zone to the local slip rate, δ , and is given by:
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In the above functional form, the parameter 0τ  represents the quasistatic
cohesive strength of the weak path, δ , which is the difference between the
horizontal components of the particle velocities above and below a sliding
portion of the interface. The parameter, β , is a dimensionless rate parameter
and is referred here as the velocity weakening parameter. β  is non-positive
and, as a result, the law described by equation (2.12) either represents a bond
whose strength remains constant with sliding rate )0( =β , or it represents a
law whose strength decreases linearly with sliding rate )0( <β . The form of
the law in equation (2.12) is the same as the one employed by Glennie [40] and



Freund and Lee [41] in their study of subsonic mode-I crack growth. The only
difference is in the sign of β  which in their case was taken to be a non-
negative constant. The special case of 0=β  results in a Dugdale type of
cohesive zone [35].

The steady-state crack propagation problem described above is analytically
tractable in the intersonic crack tip regime (Samudrala et al., 2002).
Expressions for the stress, displacement and particle velocity fields have been
obtained, but only the results that pertain to the understanding of the
experimental observations presented in section 2.2 are shown here. The
normalized shear stress distribution 0112 /)( τησ  in the bond plane, 02 =η , is
given by [33]:
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where q is the singularity exponent for intersonic crack propagation given in
equation (2.7), and λ  is related to the velocity weakening parameter β  and
crack tip velocity v by:
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The shear stress on the crack faces ( L1 −<η ) vanishes. Within the cohesive
zone ( 0L 1 <<− η ), the normalized shear stress is given by:
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The normalized shear stress distribution is displayed in figure 12. Figure
12(a) shows the effect of different levels of β  for a fixed intersonic speed,

Scv 47.1= , while figure 12(b) represents the crack plane shear stress
distribution for different intersonic speeds at a fixed 4.0−=β . The choice of

4.0−=β  is not random. Its significance will become clear at the end of this
section. Since the horizontal distance along the bond line has been normalized
by the length of the cohesive zone, the location of the tip of the cohesive zone is
at the origin, while the physical crack tip lies at –1.

Figure 12: The spatial distribution of the shear stress 12σ  along the rupture plane
(bond line). (a) Dependence on velocity weakening parameter β . (b) Dependence
on rupture speed.



Both figures have some common characteristics. As a stationary point along the
bond is approached, the shear stress rises steeply and reaches the maximum value

0τ  at 0/1 =Lη . Subsequently, this particle is processed by the cohesive zone and
sliding commences, the stress drops to zero at 1/1 −=Lη  which is the physical
crack tip. The figures show that either a lower β  or a faster speed result in a faster
decay of the cohesive shear tractions. Unlike Freund’s singular solution, we find
that 12σ  is bounded all along the crack plane. Far ahead of the tip )( 1 L>>η , the
singular solution for a sharp, structureless, crack tip is, however, recovered.

Because of mode-II anti-symmetry the values of normal stress 11σ  just above
and just below the bond line (crack line) are equal and opposite. With respect to
the orientation of the experiments, the top side of the crack faces experiences a
tensile 11σ , which is responsible for the generation of the tensile microcracks.
The bottom side experiences a compressive 11σ  of equal magnitude. The
normalized stress above the crack line is given by (Samudrala et al., 2002):
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on the crack line, and by:
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in the cohesive zone. The normal stress 11σ  vanishes on the bond line ( 01 >η ,
02 =η ) due to anti-symmetry. Figure 13 displays the crack plane variation of

the direct-stress component, 11σ , acting parallel to the crack faces.

Figure 13: The spatial distribution of the direct stress 11σ  along the rupture
plane ( 11σ  acts parallel to the direction of shear crack growth). (a) Dependence
on β . (b) Dependence on rupture speed.



The variation shown in figure 13 corresponds to the bottom side. The effect
of β and of the speed are displayed in figure 13(a) and 13(b), respectively. In
all cases, material particles above and below the bond experience zero direct
stress until the arrival of the cohesive zone tip. When the cohesive zone arrives,
the magnitude of the direct stresses (tensile stress above, compressive below)
increases to a maximum value at 1/1 −=Lη , which is the location of the
physical crack tip. After this the magnitude of the horizontal direct stresses
slowly decreases to zero along the newly created traction free surfaces of the
crack. At this point it is worth noting that the maximum value of the direct
stress is bounded for all negative values of β . On the other hand, for

11,0 σβ =  becomes singular at the physical crack tip. The value of 0=β
corresponds to the special case of a rate insensitive bond strength and a
Dugdale type of cohesive zone.

Further investigation of the solution discussed above requires the
determination of the cohesive zone length L that is expected to depend on crack
tip speed, v, quasi-static bond strength 0τ , and some measure of the applied
load. Samudrala et al. [33] defined a stress measure D

12σ  to represent the driving
force of the crack. The shear stress D

12σ  was defined as the remote stress on the
crack plane )0( 2 =η  acting at a distance D=1η  ahead of the advancing crack
tip. The arbitrary distance D should be large enough (D > > L) so that at the
point along the bond the singular solution [2,19] still applies. In addition, the
physical requirement that the stresses remain bounded at the front of the
cohesive zone was imposed. This is a common characteristic of all cohesive
zone models and in the present case results in the establishment of the
following functional relationship between L and the parameters v,/ 0

D
12 τσ  and

β  for the entire range of intersonic crack propagation [33]:
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where Γ  is the standard Euler Gamma function.



The determination of L allows for the calculation of the dynamic energy release
rate, G, or the energy flux into the cohesive zone per unit crack advance along
the bond, per unit thickness. This is defined as:

•→→= +−∫ 1211,12112
1

0 )0,()0,(2 ηηηηησ duG  (2.19)

In the above expression, 12σ  and 1,1u  are the shear tractions and displacement
gradients acting along the upper faces of the cohesive zone. The dynamic energy
release rate G is related to the crack tip speed analytically by [33]:
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where νκ 43−=  for plane strain and )1/()3( vv +−=κ  for plane stress, and:
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The resulting variation of G with speed is displayed here in figure 14 for the
intersonic regime and for only the value of 4.0−=β . G is normalized by the
constant 0G  which is the energy release rate associated with a quasi-statically
propagating mode-II crack subjected to the same far-field load D

12σ . The
normalizing constant 0G  is given by:

( )
µ
σκπ
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0 4
)1( DD

G +
= .  (2.22)

As seen from figure 14, the dynamic energy release rate (energy flux into the
tip) is finite throughout the intersonic regime except at speeds close to sc  and

lc . Hence, based on the requirement of a positive energy flux, the entire
intersonic is admissible for mode-II crack growth. The variation of 0/ GG  for
intersonic speeds depends strongly on the shear strength 0τ  through the ratio



012 /τσ D . For a given value of D
12σ  as ,0 ∞→τ  the structureless singular solution

[19] is recovered and the variation exhibits a well-defined finite spike centered
around scv 2= . In most other speeds, 0/ GG  is very close to zero.

Figure 14: Normalized energy release rate as a function of intersonic rupture
speed. The figure illustrates that the energy flux available to the tip has a
maximum at or above scv 2= .

For lower shear strengths the spike becomes considerably wider and has a
maximum value at speeds always higher than sc2 . As 00 →τ  the peak
eventually moves very close to the dilatational wave speed lc . In the discussion
of Broberg’s [31] cohesive analysis, involving a self-similar expansion of a
shear crack from initial zero length, the energy release rate was also found to be
finite and positive throughout the intersonic regime. However, there was one
important difference between his results and the results of the steady-state
analysis presented in figure 14. The energy release rate 0/ GG  for a self-similar
crack featured a maximum, which always corresponds to a speed below rather
than above sc2 . The experiments described earlier feature speeds that
approach sc2  from above, as the crack grows longer along the bond. This is



perhaps to be expected since the steady-state model, which involves a semi-
infinite crack, becomes increasingly relevant to the experiment as the crack
slowly approaches steady-state conditions (see figure 7).

Let us now turn our attention to the discussion of the tensile damage
observed in the bonded Homalite/Homalite experiments. This secondary
damage took the form of microcracks that nucleated at small distances (1-2mm)
behind the main intersonic crack. A damage that was always confined to the
upper half of the specimen. Remarkably, these cracks were all found to be
almost parallel to each other with their angle of forward inclination, ∗θ , varying
between 8° and 13° to the normal of the weak plane. As it was argued in section
2.2. that the driving force leading to microcrack initiation is provided by the
near tip field associated with the main intersonic crack. At this point, the near
tip field of the velocity weakening cohesive zone model discussed above will
be used in conjunction with the maximum tensile principal stress criterion in
order to study the nucleation of these microcracks. Here the purpose is to
determine the feasibility of secondary crack initiation and, if possible, to extract
some of the unknown model parameters describing the physical system used in
the experiments. The maximum principal tensile stress at any point on the upper
cohesive surface is given by:
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while the angle of inclination of the principal plane with the vertical [see figure
10(b)] is given by:
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For a given normalized crack speed, ,/ scv  and velocity weakening factor β ,
the variation of 01 /τσ  and ∗θ  can be obtained within the entire cohesive zone.
This is achieved by substituting the normalized stresses 011 /τσ  and 012 /τσ ,
which appear in figures 12 and 13, into equations (2.23) and (2.24). These
variations have been analytically obtained by Samudrala et al. [33] and will not
be shown here. In assuming that the material obeys the maximum principal
stress criterion for brittle fracture, a tensile microcrack would initiate at a point

∗−= L1η  in the upper cohesive surface where the tensile principal stress reaches



a critical level uσ  (i.e. uσσ =1 ). This critical stress level uσ  is the ultimate
tensile strength of the homogeneous material, which for monolithic Homalite is
equal to 35MPa. The location ∗L , where this criterion is first satisfied,
corresponds to a particular value of the principal angle ∗θ .

By using the procedure elaborated by Samudrala et al. [33], the functional
dependence of ∗θ  on 0/,/ τσ uscv , and on β  can be obtained. For a particular
material system and bond strength 0/τσ u  is fixed and can be measured in the
laboratory. For the experiments discussed above, this ratio is equal to 2.5, but
the value of β , the velocity weakening parameter, is much more elusive. This
is due to the scarcity of experimental information available in the literature on
dynamic sliding. In fact, the nature of the velocity weakening behaviour
experienced within the cohesive zone is unknown. To provide a realistic first
order estimate of β , the angle of inclination ∗θ  of the microcracks is plotted in
figure 15 as a function of β . The effect of different intersonic speeds is also
displayed. The ratio 0/τσ u  is taken to be equal to 2.5.

Figure 15: Inclination angle of microcracks to the vertical, plotted as a function
of the slip rate weakening parameter .β



The figure shows that a maximum angle of inclination of 21.8° is obtained
for the rate insensitive case of 0=β  (Dugdale zone). For this case, the angle is
independent of crack tip speed. As β  decreases ∗θ  is monotonically reduced.
For example, for scv 2= , the inclination reaches the experimentally observed
average value of 11° at 4.0−=β . However, at this value of β , the angle of
inclination varies with the intersonic speed, from approximately 8° to 14.5°.
The predicted variation is very close to the statistical variation reported in
figure 9(c). Therefore 4.0−=β  is an optimal estimate for the conditions that
prevail in the Homalite/Homalite experiments.

Having established the optimal value of the velocity weakening parameter
β , the cohesive zone solution can be used to construct ‘synthetic’ isochromatic
patterns. A direct visual comparison of the model with the experiment is now
possible. Figure 16 shows two such synthetic photoelasticity patterns
corresponding to two intersonic crack tip speeds and to identical material
properties. The details leading to their construction can be found in Samudrala
et al. [33]. In both figures, we can see that the presence of a cohesive zone
gives a finite width to the Mach waves and it reveals the existence of a
distinctive fringe structure. Such a structure is shown magnified on the right
part of each figure. In figure 16(a), the crack tip speed is equal to 1.2 sc  and the
cohesive zone size is 5mm. In figure 16(b), the crack tip speed is equal to 1.6 sc
and the cohesive zone size has dropped to almost 2.6mm. The inclination of the
Mach waves, as well as the shapes of the isochromatic fringes behind the Mach
lines, are noticeably different.



Figure 16: Synthetic isochromatic patterns constructed using the steady state
velocity weakening cohesive zone model of Samudrala et al. (2002).



2.4 Recent Continuum and Atomistic Models of Intersonic Shear Crack
Propagation
We conclude our discussion of intersonic shear crack propagation of bonded
identical isotropic solids by briefly reviewing some recent important analytical
and numerical contributions of significance to the dynamic fracture literature.
Using a newly developed cohesive element methodology in conjunction with
the finite element method, Needleman [42] simulated the Homalite/Homalite
experiments described earlier.  He conducted a highly systematic study of the
parameter space of relevance to the intersonic crack propagation. In particular,
his work examined the effect of shear strength, of fracture energy, and of
projectile impulse duration on the subRayleigh to intersonic transition. If the
projectile pulse duration is not cut off, the shear crack propagates at Rc
provided the bond strength remains high enough to prevent intersonic growth.
If the bond strength is lowered, the crack, after spending some limited time at

Rc , accelerates to a constant intersonic speed above sc2 . As the bond strength
becomes even weaker, the crack tip speed approaches the dilatational wave
speed of the solid. The transition from Rayleigh to intersonic speed is found to
involve the Burridge-Andrews Mechanism. When the duration of the pulse is
cut off, the intersonic crack decelerates to sc2  and after a while it becomes
subRayleigh and it then abruptly arrests. Needleman’s numerical work has been
crucial to our understanding of the intersonic shear crack propagation.

Using a spectral boundary element method, Geubelle and Kubair [43]
studied the problem of transient initiation and growth of a mixed-mode crack
propagating along a straight-line path under the axiom of asymmetric far-field
loading. Their work employs the use of quasi-linear rate independent cohesive
failure model, which couples the normal and the shear cohesive failure modes.
Their work examines the loading and bond strength conditions under which
mode-II and mixed-mode crack growth can occur in either the subRayleigh or
the intersonic speed regimes. For the purely mode-II case and for the low
values of bond toughness, their results show that subRayleigh crack
propagation is possible only for moderate values of the shear loading. For
higher values of bond toughness no subRayleigh regime is observed and what is
only possible is intersonic growth.



For the mixed-mode case, Geubelle and Kubair [43] found that the higher
the shear component of the applied load the lower the load level required to
achieve intersonic crack propagation. For subRayleigh mixed-mode crack
growth both opening and sliding displacements are observed at the cohesive
zone. However, for intersonic crack growth only sliding displacements appear
near the growing tip and opening displacements appear only outside the
cohesive zone. This is a remarkable observation since it links local shear failure
to intersonic conditions even when the far-field loading is not purely
asymmetric.

Abraham and Gao [44] performed the first atomistic simulation of shear
crack propagation along a weak interface. This interface was between two
harmonic crystals and characterized by a Lennard-Jones potential. Their
simulations showed that a shear dominated crack, or atomistic rupture,
accelerates to Rc  soon after initiation. At that point, the crack promotes the
nucleation of an intersonic microcrack that travels at lc , in accordance with the
Burridge-Andrews Mechanism.

Figure 17: The first atomistic view of the ‘Burridge-Andrews Mechanism’
responsible for subRayleigh to supershear transition (Abraham and Gao, 2000).

A visual demonstration of the nucleation of the secondary microcrack in
front of the primary Rayleigh crack has been illustrated by Abraham and Gao



[44] and is displayed in figure 17. Figure 17(a) shows the primary crack and it
also illustrates in front of it, along the bond, a small decohered line, which is
indicated by an arrow. Initially, the microcrack propagates at approximately the
shear wave speed. Shortly thereafter, the two cracks join up and the
combination accelerates through the intersonic regime as it is evidenced by the
two inclined Mach waves attached to the tip. When the simulation involves
bonded harmonic crystals, which mimic the linear elastic behaviour, the
recorded terminal speed is lc . When the applied far-field strains are

subsequently relaxed, the crack decelerates to sc2  in a manner similar to the
one observed in the Homalite/Homalite experiments of section 2.2.

The possibility of supersonic crack growth was investigated by Abraham and
Gao [44] and recently by Abraham [45] in a three-dimensional simulation
involving bonded unharmonic crystals. In this study the local wave speeds at
the highly strained crack tip region are higher than those of the unstrained bulk
solid. This is due to the nature of the specific unharmonic potential used in the
study. Consequently, the crack is able to propagate supersonically with respect
to the ‘linearized’ wave speeds (unstrained limit) of the crystal. However, with
respect to the wave speeds of the highly strained crack tip region, the crack is
still p-sonic.

The clear observation of the subRayleigh to intersonic transition, as well as
the reappearance of the curious speed of sc2  in an atomistic setting, is
extremely significant. Indeed, the scale at which the atomistic calculation is
performed is six orders of magnitude smaller than the laboratory experiments.
Yet, the main features observed under laboratory situations and those predicted
by continuum theory, are still preserved to a remarkable level of detail. To
demonstrate that point conclusively, Gao et al. [46] compared the atomistic
calculations with continuum level analysis thus demonstrating the magnificent
predictive power of continuum mechanics over a variety of length scales.
Without any parameter fitting, the continuum analysis agrees very well with
molecular dynamics simulations.

Finally, the most recent analytical contributions to the subject of intersonic
crack growth include the work by Huang and Gao [47] and by Antipov and
Willis [48]. Huang and Gao [47] obtained the fundamental solution of a
transient intersonic mode-II crack propagating in an elastic solid as well as the
associated cohesive zone solution. A stationary crack is subjected to a pair of



shear forces *τ  at the crack tip, and the crack tip begins to propagate with an
intersonic crack tip velocity (v >cs) at time t=0. The shear stress ahead of the
intersonic crack tip is given by:
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where f(v) is a non-dimensional function of the crack tip velocity, and q is the
exponent of stress singularity given in equation (2.7). This fundamental
solution provides the general solution for an intersonic shear crack subjected to
an arbitrary initial equilibrium field. Antipov and Willis [48] obtained the
fundamental solution for an intersonic crack propagating in a viscoelastic solid.
Huang and Gao [49] further studied the arrest of an intersonic crack tip, and
obtained the transient solution for a suddenly arrested intersonic crack after
such crack has propagated for a finite time t* The arrested crack tip resumes the
square root singularity, but the stress intensity factor does not instantaneously
reach its equilibrium value, or the value expected, for a stationary crack tip
subjected to the same loading. This is contrary to a suddenly arrested
subRayleigh crack, for which the stress intensity factor immediately reaches the
static value after being arrested [see equation (2.3)]. An arrested intersonic
crack tip is unable to reach the equilibrium field instantaneously because the
Rayleigh and shear waves are still trailing behind it. Figure 18 shows the
normalized stress intensity factor, K/Kequilibrium, versus the normalized time, t/t*,
for the arrested intersonic crack tip, where Kequilibrium is the equilibrium value of
K (i.e., ∞→t ), and the intersonic crack tip velocity just before arrest is
v=1.1cs. A vertex in the figure is observed, corresponding to the arrival of the
shear wave (t=vt*/cs) at the arrested tip. Immediately after the Rayleigh wave
arrives at the tip (t=vt*/cR), the stress intensity factor reaches its equilibrium
value Kequilibrium. This indicates that the arrested intersonic crack tip reaches its
equilibrium value for a static crack tip after a finite time delay which is just
enough for all waves to catch up. Gao et al. [51] studied both suddenly
accelerating and decelerating intersonic shear cracks and established that, for
intersonic cracks that decelerate to subRayleigh speeds, the stress intensity
factor in equation (2.3) is reached only after all the Rayleigh and shear waves



catch up with the subRayleigh crack tip. For an intersonic crack that accelerates
or decelerates to another intersonic crack tip speed, equation (2.3) never holds
because the trailing Rayleigh and shear waves can never catch up.

Figure 18: The normalized stress intensity factor, K/Kequilibrium, around a
suddenly arrested intersonic crack tip, Kequilibrium is the equilibrium value of the
stress intensity factor (i.e., time ∞→t ), time t is normalized by the crack
propagation time t*, Poisson’s ratio = 1/3, the crack tip velocity is v=1.1cs, and
cs is the shear wave speed.

3. CRACK PROPAGATION IN WEAK PLANES BETWEEN TWO
CONSTITUTIVELY HOMOGENEOUS, ANISOTROPIC SOLIDS

Our discussion so far has concentrated on constitutively homogeneous and
isotropic solids that contain weak paths along which shear cracks may be
trapped and may propagate dynamically. We have demonstrated that such shear



cracks may attain intersonic speeds and may propagate as fast as the dilatational
wave speed of the isotropic material. We have investigated issues of crack tip
stability and have shown that certain multiples of the isotropic wave speeds
delineate the boundaries of acceptability of stable intersonic shear crack
propagation. In this section, we extend our discussion to the study of dynamic
cracks in simple anisotropic materials also containing preferable crack
propagation paths. In particular, we will discuss recent experiments by Coker
and Rosakis [52], who studied dynamic crack propagation in thick
unidirectional fiber reinforced composite plates subjected to impact loading.

Dynamic crack growth along weak planes is a predominant mode of failure
in all types of structural composite materials, as well as in most layered graded
or sandwich structures. With increasing demand for specialized, lightweight,
and high-strength structures, the failure mechanisms encountered in such
composites have been receiving increased attention from the engineering
community. The particular case of a unidirectional graphite fiber, polymer
matrix, composite that will be discussed here represents perhaps the simplest
case of a truly anisotropic material of some practical significance. When viewed
‘macroscopically’, the details of the fiber dimension and local properties
become invisible and a homogenized constitutive description may be adopted.
Through this homogenization, the composite material appears as ‘anisotropic’
but is still considered constitutively homogeneous and features drastically
different stiffness and wave speed along different directions. In addition to
introducing wave speed anisotropy, the fibers also have another effect. They
also feature weak crack paths along their interface with the matrix. These paths
are lines along which the fracture resistance of the solid is drastically lower
than any other direction. As a result, the solid can be viewed as inhomogeneous
regarding its resistance to fracture in much the same way the bonded
Homalite/Homalite plates were viewed earlier.

Figure 19 shows the geometry of the composite plates used in the fracture
experiments. It also displays micrographs of the fiber microstructure corresponding
to two areas within the plate thickness. Unidirectional composites of the type
shown in figure 19 are modeled by a very simple anisotropic constitutive law and
are known as ‘transversely isotropic’ materials. The details of their constitutive
description are given by Coker and Rosakis [52] together with the values of various
physical properties of the particular material under consideration. The particular
type of material anisotropy introduced by the fibers results in different bulk wave
speeds of dilatational waves traveling along the two principal directions of anisotropy.



Figure 19: View of a thick composite plate containing a notch. The micrographs
provide cross-sectional views of the microstructure of the unidirectional graphite-
epoxy material.

The shear wave speed, however, is independent of direction. The dilatational
wave speed along the direction of the fibers, II

lc , is equal to 7500m/s, the
dilatational speed perpendicular to the fibers, ⊥

lc , is equal to 2700m/s while the

shear wave speed, Sc , is equal to 1550m/s. It should be noted that ⊥
lc  is only

slightly higher than that of the polymer matrix, while II
lc  is slightly lower than

that of the graphite fibers. Also, ⊥= l
II

l cc 8.2 . The Rayleigh speed II
Rc  of

surface waves propagating parallel to the fibers on the surface of a transversely
isotropic half space of the same material considered by Coker and Rosakis [52]



is m/s154899.0 == S
II
R cc . Plates of the type shown in figure 19 were subjected

to impact loading through a projectile fired by a gas gun at speed varying from
10m/s to 57m/s. A schematic diagram of the experimental arrangement is
shown in figure 20.

Figure 20: Diagram of the high-speed photography experimental set-up and the
optical method of CGS shown in a reflection arrangement.

The plates were impacted at the plate’s edge opposite the initial notch. When
the projectile impacted the plate along the specimen center line, the resulting
stress waves loaded the initial notch symmetrically and the resulting failure was
in the form of a growing mode-I crack. When the specimen was hit below the
center line, the loading of the notch was shear dominated and the resulting
failure proceeded in the form of a mode-II crack. In both cases, the existence of
weak fiber/matrix interfaces force the crack to grow directly ahead of the notch
tip along the horizontal center line. In order to record the history of crack



growth, the method of Coherent Gradient Sensing, CGS [11], was used in a
reflection arrangement and in conjunction with high-speed photography (2x106

frames/s). The fringe patterns visible in the images that follow are contours of
equal out-of-plane surface displacement gradient, 13 / xu ∂∂ . They are intimately
related to the stress state near the propagating crack tip and their shape and size
reflects the nature and the intensity of the near tip singularity.

3.1 Symmetric Crack Growth along the Fibers
Symmetric, mode-I, crack tip deformations were obtained by impacting the
specimen symmetrically along the notch line as described earlier. Four images
from a sequence of CGS interferograms, corresponding to mode-I crack
initiation and growth, are shown in figure 21 for the highest impact speed of
57m/s. Images of this type allow for the measurement of crack tip speed and for
the estimation of dynamic fracture parameters.

Figure 21: CGS interferograms illustrating the process of initiation (from a notch)
and dynamic growth (along the horizontal fibers) of a mode-I crack in a unidirectional
composite plate.



The images show that for the symmetric loading case, the resulting mode-I
cracks propagate dynamically along the fibers, ahead of the initial notch tip, and
attain very high speeds without displaying any tendency to branch. The crack
tip speed histories of three mode-I experiments corresponding to three different
projectile impact speeds are shown in figure 22. As the impact speed is
gradually increased so is the speed of the resulting mode-I cracks. However,
there is a critical level of impact speed beyond which changes in crack tip speed
are no longer achievable. In fact, as it is discussed by Huang et al. [53] and
Coker and Rosakis [52], the mode-I cracks seem unable to ever exceed the
Rayleigh wave speed of the composite (horizontal line) irrespectively of the far-
field energy available to it through impact loading. This phenomenon is very
consistent with the discussion presented in section 1.2. It is analogous to the
behaviour of dynamic mode-I cracks in bonded isotropic solids and shows that

II
Rc  is still the limiting speed of the transversely isotropic solid in the presence

of preferable crack paths along the fibers.

Figure 22: Mode-I crack tip speed histories. As the impact speed increases the
crack tip speed reaches, but never exceeds, Rc .



3.2 Shear Crack Growth along the Fibers
In the asymmetrically loaded experiments, the impact wave compression
propagates from one end of the plate to the other (side of the notch) and, just
below the notch, is being reflected as a tensile wave. This reflection loads the
notch in a predominately shear mode inducing dynamic shear rupture. Figure
23 is a sequence of four CGS interferograms and it illustrates the crack
initiation and shear crack growth process. Figure 23(a) shows the mode-II
fringe pattern that has developed around the notch as it is loaded by the arriving
wave. As the crack initiates and grows along the straight-line fibers, the nature
of this fringe pattern changes significantly. The fringes are pulled back and are
elongated. The rounded fringe loops change to a triangular wedge, which is
bounded by lines of high concentrated fringes emerging from the crack tip at a
well-defined angle. Eventually these lines broaden into more parallel line
structures [see figures 23(c) and (d)], which intercept the crack faces a few
millimeters behind the propagating crack front.

Figure 23: A shear rupture propagating intersonically along the fibers of a
unidirectional composite plate. The high-speed images are obtained in a reflection
arrangement through CGS interferometry. Fringe patterns correspond to contours
of surface slope component along the horizontal.



The observed structures are indeed reminiscent of the isochromatic images
presented earlier in figures 5 and 6 in relation to intersonic crack growth in
bonded isotropic Homalite/Homalite plates. A major difference, however, is
that the images presented in figure 23(c) are specularely obtained by reflection
of light from the specularely reflective surface of the composite plate. Also, the
absolute magnitude of the maximum observed crack tip speed is unprecedented
and approached 7500m/s, which is approximately 3.4 times higher than those
observed during intersonic shear rupture of the Homalite/Homalite system.
Finally, one should note that the clear formation of double shock waves, visible
in the photographs, provide clear evidence that dynamic large-scale frictional
contact takes place on a scale much higher than in the Homalite/Homalite system.

Figure 24 collectively displays the speed histories of three different shear
(mode-II) crack growth experiments. For comparison purposes, the speed history
of the fastest recorded mode-I crack in the same material system is also shown.

Figure 24: Mode-II rupture speeds as a function of crack tip position. The
speed history of a mode-I crack in the same composite material is also shown
for comparison. Maximum speeds as high as 7.5 km/s were recorded.



The general trends for the shear dominated crack growth is to initiate within the
intersonic regime, to accelerate up to 7500m/s, which is the dilatational wave
speed along the fibers, and to then oscillate between this speed and another
speed, cv . The speed cv  is well defined in the experiments and is equal to
6500m/s. This phenomenon is highly repeatable and suggests that cv  may have
some special significance worth of theoretical scrutiny. How exaggerated and
unprecedented this maximum mode-II crack tip speed really is can only be
appreciated by comparison to the mode-I case. As shown in the bottom of figure
24, the classical mode-I opening cracks never exceed m/s1548== II

Rcv , a speed
which is roughly five times smaller than their shear rupture counterparts.

Let us now turn our attention to the speed, cv . Its significance became
apparent through the theoretical work of Huang et al. [53] and Gao et al. [50].
They investigated the asymptotic nature of intersonic shear cracks propagating
along a predetermined straight path in orthotropic solids, and determined the
exponent of the stress singularity as follows [42]:
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where ρ  is the mass density, cij are the in-plane moduli for an orthotropic solid,
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and x1 denotes the fiber direction (i.e., direction of crack propagation), 1µ  and
2µ  are given by:
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2
122211 2 vcccccccB ρ+−−−= . It is evident from the above

expressions that, except for one intersonic speed cv , the exponent of stress
singularity q is always less than one half such that the energy flux into the crack
tip vanishes at all speeds within the intersonic regime with the exception of



cvv = . At this speed, the energy flux is finite and positive, and the near tip
deformation field resumes its original subsonic, square root singular, and
radiation free nature. In particular, for an orthotropic solid, this critical speed is
determined by q=1/2 [or equivalently the vanishing of the denominator inside
the tan-1 function of equation (3.1)]. This gives the critical speed as:
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Where 11E  and 12µ  are the anisotropic elastic moduli, 12ν  is an anisotropic
Poissón’s Ratio, and sc  is the shear wave speed. Exact definitions for

121211 ,, νµE  and for sc  can be found in Huang et al. [53], or in Coker and
Rosakis [52] together with their measured values for the fiber reinforced
composite of the experiments. By using these values the speed cv  is calculated
and it is found to be equal to 6600m/s. Moreover, this value is very close to the
level identified experimentally as the lower bound of the oscillations discussed
in relation to figure 24.

At this point it is important to note that for the case of isotropic materials the
factor multiplying sc  in equation (3.4) becomes equal to 2  and the critical

speed reduces to sc cv 2= . This is indeed the familiar speed that has
consistently appeared in relation to intersonic shear crack propagation in
isotropic solids discussed throughout this review article. Its physical importance
and meaning is derived by the same energetic and stability arguments that have
been discussed throughout section 2. In fact, as has also been shown by Gao et
al. [50], the existence of radiation free transonic cracks can be demonstrated in
relation to a much wider class of anisotropic solids.

The importance of using cohesive zone models to study intersonic rupture in
orthotropic solids was once again emphasized by Broberg [55]. His analytical
work shows that introducing cohesive structure into the crack tip removes the
pathology of predicting zero energy flux into the intersonic crack tip. In fact,
the cohesive zone model ensures the existence of a finite and positive energy
flux throughout the intersonic regime. In a manner analogous to the isotropic
cohesive models of section 2, the energy flux has a distinct maximum value at a



speed close, but not equal, to the critical speed cv . Finally, cohesive theories
have recently been used in conjunction with elaborate numerical schemes to
study intersonic crack propagation. Noteworthy are Hwang and Geubelle’s [56]
contributions, which employed a spectral scheme to model mixed-mode failure
of orthotropic materials. This work outlines the role of far-field mixity in
determining favorable crack tip speed regimes. For the case of shear dominated
crack growth, their speed history predictions are in excellent agreement with the
results of Figure 24.
Finally, the existence of non-uniform, highly transient sliding processes trailing
the tip of an intersonic shear crack have recently been verified numerically by
Yu et al. [57]. In this calculation the unidirectional composite plates used by
Coker and Rosakis [52] were modeled in three dimensions by means of finite
elements. Material failure was allowed to proceed by satisfying a local
decohesion law that was embedded in the boundaries between elements. The
possibility of frictional contact was also taken into account while local
temperature increases resulting from frictional dissipation were calculated at the
appropriate locations. The equivalent two-dimensional problem was also
studied by Dwivediy and Espinosa.

4. CONCLUSIONS

Extensive evidence of intersonic crack growth processes which occur in a
variety of material systems containing preferable propagation paths have been
presented in this article. Laboratory studies and theoretical and numerical
models all strongly suggest that there are many underlying common elements in
the physics governing shear decohesion. In particular it is clear, that
irrespective of material systems, all intersonic shear crack propagations involve
common properties such as:

1. Single or multiple shock wave formation,
2. Large-scale, non-uniform, frictional contact and sliding,
3. Similar mechanisms of nucleation or of subsonic to intersonic transition,
4. Similar intervals of preferable rupture speed stability.

The above commonalities are characteristic properties of dynamic shear
crack propagation and are only relevant to the study of failure in solids that
contain preferable crack-growth paths. In strictly homogeneous (monolithic)



solids, however, shear crack growth is unattainable. In addition, tensile crack
growth is purely subRayleigh.

Table 1 below summarizes the maximum attainable crack tip speeds and
illustrates the stable crack tip regimes in different material classes.

TABLE 1: Maximum attainable crack tip speed and stable crack tip regimes in
different material classes. Only brittle solids are included

Crack growth speed characteristics of both mode-I (tensile) cracks and
mode-II (shear) cracks are compared in the two major rows. The two columns
compare crack growth behaviour between strictly homogeneous (monolithic)
materials and constitutively homogenous materials that have preferred crack
paths. The column to the right also compares the crack speed behaviour of
cracks in orthotropic and in bonded isotropic solids.

The case of inhomogeneous systems involving dissimilar bonded
constituents, however, are not discussed in this article and are not represented
in the above table. For such systems, research has not yet provided us with a
clear-cut picture of maximum attainable crack tip speeds and preferable speed



stability regimes. Given the complexities involved in such systems;
complexities due to the shear/normal traction coupling at the interface, it would
not be surprising to conceive of the processes involved in the rupture of such
systems as requiring a much more sophisticated level of analysis. Discussions
of the developing literature on this subject can be found in the review paper by
Rosakis et al. [46] and the recent work of Samudrala and Rosakis [47].
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