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ABSTRACT: The paper is an extension of the author’s earlier publication in which
Dugdale strip yield zone (SYZ) model was generalized from thin specimens (modeled as
dominated by plane stress condition) to specimens of arbitrary thickness. Now the model
has been extended to include the in – plane constraint as well as the effect of the strain
hardening of the material within SYZ.

INTRODUCTION

Tri-dimensional numerical stress analyses (e.g. [1-3]) in front of the
crack within elastic-plastic materials show that plane strain dominates over
the region close to the crack tip and midsection of specimen (see Fig.1b). In
turn, plane stress is reached at certain distance from the crack tip. This
distance depends on the x3 coordinate. Fig.1 (along the midsection of the
specimen the plane stress is usually reached at the distance r=0.5B ÷B).

a)                                                                  b)
Fig.1 The scheme of the 2-D strip yield zone (SYZ)



Two-dimensional finite element (FE) analyses using finite strains (e.g.
[4]) show that the stress components σ11 and σ22 reach the maximum values,
which depend on Ramberg-Osgood (R-O) work hardening power exponent
n, at distance from the crack tip close to 2δT, where δT is crack tip opening
displacement. From the location of maximum stress to the crack front both
stress components decrease down to zero and σ0 value respectively (σ0 is
the yield stress). These analyses show that the stress distribution in front of
the crack depends not only on the plastic properties of material but also on
the in- and out-of-plane constraints.

The purpose of this paper is to show that the well known Dugdale
model [5], for Mode I, can be modified to include both in- and out-of-plane
constraints as well as the work hardening of material. It may be achieved by
requiring that the yield criteria should be satisfied within the SYZ.

IN- AND OUT–OF–PLANE CONSTRAINTS IN DUGDALE MODEL.

In the paper [6] author utilized the tri-axial stress constraint (TASC)
factor, Tz introduced and defined by Guo [7] to extend the classic Dugdale
model [5] to arbitrary specimen thickness. Original Dugdale model was
introduced for plane stress situation, it means for thin specimens, and for
elastic – perfectly plastic materials. SYZ models plastic domain in front of
the crack. According to the original Dugdale model [5], only the Tresca
yield condition is satisfied within this zone. For plane stress the smallest
normal stress component is σ33 = 0 (notation is due to the coordinate system
shown in Fig.(1)). The largest normal stress component is σ22=σ0. Tresca
yield criterion does not take into account the σ11 stress component for plane
stress situation.

For plane stress case Huber-Mises-Hencky (HMH) yield criterion
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, where α=σ11/σ22.

Usually, α=α(x1) and 0≤α<1. Thus, in most cases σ22 > σ0 and σ22 must
change along SYZ to satisfy this criterion.

When the plane strain is assumed neither HMH nor Tresca criterion is
satisfied if classic Dugdale model is considered [6]. The stress analysis
within the SYZ for perfectly plastic material showed that if the yield criteria
are satisfied the stress component σ22 rise considerably above the yield



stress [6]. The stress rise was due to the geometrical, out-of-plane constraint
only.

In tri-dimensional case Tresca yield condition requires proper selection
of the greatest and smallest normal stress component. The largest one, is
σ22; the smallest one may be either σ11 or σ33. Analysis of the inequalities
σ11<σ33 or σ33<σ11, utilizing definition of the TASC factor:
Tz=σ33/(σ11+σ22) (Tz may change from 0 (plane stress) to 0.5 (plane
strain)), as well as the value of the ratio α=σ11/σ22 (α is greater than zero
and usually smaller than one) leads to the conclusions:
• σ11<σ33 within domain I (Fig.1). This inequality can not be satisfied in

domain dominated by plane stress since it would require α<0  for Tz=0.
• σ33<σ11 within domain II. This inequality can not be satisfied in
domain dominated by plane strain since it would require α>1 for Tz→0.
• σ33=σ11 along the borderline and the following conditions are
satisfied:
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σ22 =σ0 /(1-α) (2)

Within the domain I σ22 changes according to Eq (2) and α should satisfy
Eq(1) at the borderline, it means at the line where stresses reach the
maximum values. At the crack tip α should be equal to zero to satisfy the
numerical results referred to in the Introduction.

Within the domain II σ22 changes according to the formula:
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It can be easily shown that for small scale yielding (SSY) the ratio α at
the leading edge (Fig.1) can be expressed by the relation:
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where T is the second term of the asymptotic expansion of the stress field in
front of the crack in linear elastic material. For large scale yielding the
similar relation can be written in terms of the Q–stress [4]. Thus, the in-



plane constraints are included into model through the T- or Q-stresses
computed numerically.

Qualitative picture of the stress distribution within the SYZ according
to the HMH hypothesis should not be much different from those obtained
using the Tresca criterion. Thus, also for the HMH hypothesis, the
borderline exists. At this line σ11 = σ33 and the HMH hypothesis reduces to
σ22 =σ0 /(1-α) (the same relation as for Tresca criterion). The stress
distribution within the SYZ, which satisfy the HMH criterion can be
determined by the following formula [6] :
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Functions α(β) and Tz(β,γ,n) should be known (where β=r/rp, γ=rp/B,
rp is the SYZ length) to compute stress distribution within SYZ according to
Eqs (2), (3) and (5),

The α(β) function can be approximated by a piece-wise linear function
in between three points: at the leading edge of the SYZ (Eq. 2): α2=α(r=rp),
at the borderline: α1=α(β=βb) (Eq. (4)) and at the trailing edge: α(r=0)
where βb denotes the location of the borderline along SYZ.
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where H(-) is Heaviside function.
The TASC factor, Tz can be computed from:
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where νep(ν,n) and F(β,γ) are defined in [6,7].
Location of the borderline can be determined using Eqs (1), (2) and (7) for
given or assumed maximum value of σ22 within the SYZ.

DUGDALE MODEL AND THE STRAIN HARDENING EFFECT.

It was shown in [6] that within the SYZ the σ22 stress rises above the
yield stress by a considerable amount. The stress rise was due to the



geometrical constraints only. Numerical computations performed for finite
strains (e.g. [4]) show that the stress elevation is lower for perfectly plastic
materials than for strain hardening ones. Thus, adaptation of the Dugdale
model to real materials requires its modification to include work hardening
in addition to the in- (α function) and out (Tz function)- of  - plane
constraints. To include the work hardening properties of material, the
constitutive equation should be adopted. It requires proper definition of
strains, which is not so obvious for the SYZ. We propose this definition in
the form:

Tδ
δϕε =22 (8)

where: δ(r) defines the opening of the crack faces within the SYZ,  ϕ  is
scaling factor, which will be defined later. The simplified definition of δ(r),
adopted in the paper is as follows:

s
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where s=σext/σo and σext is the external traction.  Accuracy of this
approximation is high for moderate loading: for s=0.5 the maximum error
with respect to the exact solution [8] is less than 3 per cent. For s=0.95 the
error does not exceed 8 percent. Above approximation is strictly correct for
uniform stress distribution within the SYZ. Now the one – dimensional form
of the R-O stress – strain constitutive relation can be adopted. For perfectly
plastic material within the SYZ the yield stress can be written in the form:
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where a*  (R-O coefficient) is assumed to be equal to 1. The scaling
coefficient ϕ should be selected properly to satisfy the following
requirements: 1) When β=1 the yielding stress, σy should be equal to σ0. 2)
When n→∞ the yielding stress should also approach the σ0 value. 3) The
yielding stress should reach the maximum value at the borderline since the
opening stress decreases between the borderline and the trailing edge. All
these requirements are satisfied if ϕ is defined as:
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where ξn= 0max22 )( σσ  for R-O material characterized by power exponent
n, ξ∞= 0max22 )( σσ  for perfectly plastic materials. ( )max22σ denotes the value
of the opening stresses at the borderline. The exponent ω is unknown
quantity. It is expected (and it is assumed in this paper) that ω ≅ 1.For high
constraint (e.g. double edge notched specimen) ξ∞ = 3. In principle this
value should be computed numerically as well as the value of ξn.

RESULTS OF COMPUTATIONS

All formulas presented in the two last chapters can be used to compute:
1. The stress distribution within the SYZ both for perfectly plastic

materials and work hardening materials for arbitrary specimen
thickness

2. The value of the average, uniform stresses distribution within the
SYZ for arbitrary specimen thickness, for perfectly plastic materials
and work hardening materials.

Results of the computations presented in this chapter were obtained
using Mathcad 2001. Numerically obtained results were also approximated
by simple algebraic formulas to allow for their applications to various
practical Fracture Mechanics problems.
Computations should be made according to the following scheme:
• Using Eq. (2) the value of α(β=βb) can be computed replacing σ22

with (σ22)max, which should be known or assumed. For perfectly plastic
material and highly constrained geometries this value is close to 3. For less
constrained geometries it is smaller than 3. Such a value can be either
adopted from the literature or obtained from FE computations. When the
work hardening effect is taken into account one should also replace the σ0

by σy computed from Eq. (10) for β=βb.
• The value of α(β=βb) should be used in Eq.(1) in order to find the
value of Tz(β=βb) at the borderline.
• Utilizing value Tz(β=βb) along with Eq.(7) the location of the
borderline, βb should be determined.
• α(β) function should be computed introducing α(β=0)=0, α2=α(β=1),
computed from Eq.(2) and α1=α(β=βb) into Eq.(4).



• Introducing Eqs (6) and (7) into Eqs (2) or (3) and (5) the stress
distribution within the SYZ can be determined for Tresca or HMH yield
conditions. When the work hardening is taken into account σ0 should be
replaced by σy (Eqs ( 10) and (11)).
• The average value of the SYZ stresses, σSYZ should be computed.

 Below an example results are shown for: ξ∞=3, ξn=5, σ0=1000MPa,
s=0.5, T=0 for variety of specimen thickness (γ=rp/B). The results will be
compared with those for perfectly plastic materials.

The yield stress distributions, σy computed according to Eqs (10) and
(11) are shown in Fig. (2). They have been computed for wide range of R-O
exponents n. The results are practically independent of ξ∞ and ξn for given
ξn/ξ∞ ratio. The yield stress distributions were used to compute the stress
distributions within the SYZ using Eqs (5), (2) and (3) for the HMH and
Tresca yield criteria respectively. The results are shown in Fig. (3) and they
represent average, through the thickness values. One may notice the
maximum of the opening stresses in front of the trailing edge. The work
hardening exponent (at fixed ξn and ξ∞) does not influence this distribution
close to the trailing edge. Differences are noticeable close to the leading
edge of the SYZ.

The main reason for the computations presented in this paper was to
provide simple formula for the average stress distribution within the SYZ,
σSYZ. Such an approximation would preserve the simplicity of the Dugdale
model application to variety of the Fracture Mechanics problems allowing
however, for certain generalization of the model. The general formula to
compute σSYZ is as follows:
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where the superscript h  can be replaced by “HMH” or “Tresca” depending
on the hypothesis used in the analysis. Exact numerical results following
from evaluation of the Eq. (12) are shown in Fig.(4) for different R-O
exponents n. Eq. (12) can be simplified without noticeable lost of accuracy
to the following formula:
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where function Ψ(n) is approximation of the integral in Eq.(12) and it has a
form:
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where a=1, b=1.773 for ξn=5 and ξ∞=3. For other values of ξn/ξ∞ ratio
coefficients will be different. Function 
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Figure 2.Yield stress distribution within the SYZ

where e=1.081, f=1.734, c=0.0968, d=0.976 in the case of the HMH
hypothesis, e=0.999, f=1.564, c=0.102, d=0.983 in the case of the Tresca
yield condition.
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Figure 3. Stress distribution within SYZ according to HMH and Tresca
hypotheses for γ=rp/B=1, σ0=1000 MPa

CONCLUDING REMARKS

In the paper Dugdale model has been generalized to include in and out-
of-plane constraints and work hardening properties of material. Constraints
entered model through α(β=1) function – in-plane constraint and TASC
factor Tz – out-of-plane constraint.

Computed stress distributions along SYZ  (Fig.3) preserve the
qualitative and to some extent quantitative features of the numerically
computed [1-4] stress fields in front of the crack tip. Formula to determine
the average stress distribution within SYZ, σSYZ can be expressed in a
simple form (Eq. (13)). It preserves the simplicity of Dugdale model (σ0 is
simply replaced by σSYZ) for its practical applications within the framework
of Fracture Mechanics. However, σSYZ contains “information” concerning
geometrical constraints as well as work hardening properties of material.

To use the model one should know: yield stress σ0, R-O power
exponent n, specimen thickness B, ξn, ξ∞ , which can be found in literature
or computed numerically, in-plane constraint parameters: T or Q – stresses.
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Figure 4. σSYZ as a function of relative length of the SYZ for ξ∞=3, ξn=5,
n=25, n=10 and n=∞ both for HMH and Tresca hypotheses.
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