
Analysis of ductile Mixed-Mode I/II fracture initia-
tion with a nonlinear CDM model

A. Pirondi1 and N. Bonora2

1 Department of Industrial Engineering, University of Parma, Parco Area
delle Scienze 181/A, 43100 Parma, Italy
2 Department of Industrial Engineering, University of Cassino, v. G. De
Biasio 43, 03043 Cassino, Italy

ABSTRACT: in this study, boundary layer FE analyses of a mixed-mode I/II loaded crack
are performed within the context of small-scale yielding conditions using the nonlinear
CDM model developed in [1]. The model is implemented in the commercial FE code
ABAQUS. The attention is focused on the modeling of incipient fracture and of the the first
steps of propagation.

INTRODUCTION

The possibility to predict the failure of components under complex loading
conditions is an attractive subject which led, in the last decades, to the de-
velopment of constitutive models based on the so-called local approach. The
many models can be grouped into two main categories: porosity models and
Continuum Damage Mechanics (CDM) models.

Analyses of mixed-mode ductile fracture initiation have been made in the
past using boundary layer FE model with the Gurson constitutive law [2-4].
In the Gurson model the porosity plays the role of a softening variable that
progressively implodes the yield surface to account for damage.

In this study, boundary layer FE analyses of a mixed-mode I/II loaded
crack are performed within the context of small-scale yielding conditions
using the nonlinear CDM model developed in [1]. The model is imple-
mented in the commercial FE code ABAQUS. The attention is focused on
the modeling of incipient fracture and of the first steps of propagation.

NON-LINEAR CDM MODEL

The CDM models are developed in the framework of continuum mechanics
and the damage effects are accounted for by a thermodynamic variable, D,
[5]. Damage accounts for material progressive loss of load carrying capabil-



ity due to irreversible microstructural modifications, such as microvoids
formation and growth, microcracking, etc. From a physical point of view,
damage can be expressed as
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where, for a given normal n, A n
0
( ) is the nominal section area of the Repre-

sentative Volume Element (RVE) which defines the mesoscale dimension,
and Aeff

n( )  is the effective resisting one reduced by the presence of micro-
flaws and their mutual interactions. If the damage is assumed to be iso-
tropic, the scalar quantity D can be identified more easily as:
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where E0 and E~  are the Young’s modulus of the undamaged and damaged
material, respectively.

In [1] a new non-linear CDM model for ductile failure was proposed that
was proven to match well the damage evolution for different classes of met-
als and to be effective in describing the decrease of ductility (i.e. strain to
failure) with increasing stress triaxiality exhibited by ductile metals. This
model was also successful in predicting the response of notched and cracked
components using damage parameters identified by uniaxial tensile tests [6].
In this model, the damage dissipation potential fD, similar in meaning to the
one used for describing plasticity, has the following expression:
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where Dcr is the critical value of the damage variable for which ductile fail-
ure occurs, S0 is a material constant and n is the material hardening expo-
nent. The damage exponent α determines the shape of the damage evolution
law and is related to the nature of the bound between brittle inclusions and
the ductile matrix. The kinetic law of damage evolution is:
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A detailed description of the derivation of these equations can be found in



[1]. The function f(σH/σeq) that accounts for stress triaxiality effects in Eq.
(4) is defined as:
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that is derived assuming that ductile damage mechanism is governed by the
total elastic strain energy, Lemaitre [5]. Here, σH=σkk/3 is the hydrostatic
part of the stress tensor, σeq the von Mises equivalent stress and ν is the
Poisson’s ratio. The model requires five material parameters: the strain
threshold (in uniaxial monotonic loading) εth, at which damage processes
are activated; the strain εf at which failure occurs under uniaxial state of
stress (i.e. σH/σeq=1/3); the initial amount of damage present in the material,
D0; the critical damage, Dcr, at which failure occurs and the damage expo-
nent, α, that control the shape of damage evolution with plastic strain. The
procedure for the identification of the damage parameters can be found in
[6].

FINITE ELEMENT MODELING

A Boundary Layer technique is used in this study, that means only a circular
portion of material around the crack tip is modeled. A slit with a round
notch of radius b0/2 at the end is introduced to simulate the presence of a
crack. The mesh is composed of an outer portion centered on the tip with an
angular discretization of 15° (Figure 1a) and an inner portion, with elements
angularly spaced of 7.5° and a higher radial refinement (Figure 1b).

Figure 1: Outline of the FE model: (a) outer portion; (b) inner portion.
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Four-noded isoparametric elements are used. The ratio between the notch
and the outer radius is (b0/2)/R0=10000, so that plasticity is always well-
contained within the boundary layer.

A finite strain formulation with incremental plasticity and associated von
Mises flow rule was used in the simulations. Plane strain conditions were
assumed. The material properties are that of SA 537 steel determined previ-
ously by one of the authors and are summarized in Table 1 (D0=0).

TABLE 1: Material properties used in the simulations.

TENSILE PROPERTIES DAMAGE PARAMETERS
Young’s mod., E (GPa) 190 Dcr 0.85

Poisson’s ratio, ν 0.3 εth 0.0127
Yield stress, σ0 (MPa) 380 εf 1.7
Hardening exponent, n 0.143 α 0.655

The mixed mode elastic K field is imposed on the outer boundary, that is:
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Four values of the mixed mode elastic parameter Me=2/π*arctan(KI/KII)
were simulated, namely Me=1 (mode I), Me=0.667, Me=0.333 and Me=0
(mode II).

RESULTS AND DISCUSSION

Preliminary analyses, restricted to mode I conditions, were devoted to study
the sensitivity of the model to the element size and to the time increment of
the solution. The sensitivity was defined on the basis of the value of K at the
instant when the first group of elements failed at the crack tip. To vary the
element size while keeping constant its shape, the notch radius and the ra-
dius of the inner portion of the model were changed accordingly. The results
showed that the value of J at the instant of failure, Ji, increased with the
element size but the corresponding value of Ji/(σ0b0) was almost constant. A
different loading step within the range 0.25 ≤ ∆K ≤ 2.5MPa√m did not re-
sult in appreciable differences.



The first set of mixed mode analyses was limited at the instant when the
first group of elements at the crack tip fails. In Figure 3 the contour plots of
damage at the instant of failure are reported. Under mixed mode loading, the
damage distribution is the result of the competition between the higher tri-
axiality at the blunted side of the tip and the strain concentration at the
sharpened side. In fact, both factors affect the damage rate according to Eq.
(10). Under mode I and mixed mode conditions, the influence of stress tri-
axiality is always prevailing and, therefore, the critical damage is attained at
the blunted side of the tip. Under mode II loading, the strain concentration
at the sharpened side is high enough to initiate a crack, although damage
reaches a high value also at the blunted side.

Figure 3: Contour plots of damage at the instant of failure.

In the mixed mode fracture envelope of Figure 4 the values of the mode I
(KI

i) and mode II (KII
i) stress intensity factor at the instant of failure are

reported, normalized with respect to the corresponding pure mode I value
(Me=0), KI,i. Since the mixed mode fracture toughness of the SA 537 was
not available, they have been compared with the mixed mode fracture en-
velopes predicted by the criteria [7-9]. The FE simulation results fall within

 Me=1  Me=0.667

 Me=0.333  Me=0



these criteria and are especially in good agreement with the maximum hoop
stress theory [7], which predicts fracture to occur along the plane of maxi-
mum hoop stress at the crack tip.
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Figure 4: fracture envelope predictedby FEM and by [7-9].

The first steps of crack propagation are shown in Figure 5. The crack al-
ways kinks towards the blunted side with the exception of Mode II loading,
where it branches at both the blunted and sharpened sides. As the branched
cracks progress, the one at the sharpened side closes up, eventually arresting
the crack advance. Unfortunately, this kind of varying self-contact condi-
tions are very difficult to implement in the simulation, therefore the propag-
tion of this branch of the crack may be fictitious. Also from the physical
standpoint the propagation at the sharpened side should be delayed, because
a highly negative triaxiality, such as the one that develops there, increases
material ductility [10]. In the case of homogenous, low-hardening metals, an
almost co-planar crack advance is often observed under Mode II loading
[11-13] but, in this case, the underlying mechanism is a void-sheeting [14]
rather than void nucleation, growth and coalescence. In short, damage
should not be modeled in the same way for positive and for negative triaxi-
ality, as discussed in [15]. If we assume, as in [15], that the damage rate is
zero for negative triaxiality, the Mode II loaded crack can only propagate at
the blunted side.

The angle θi between the initial and the kinked crack, measured on the
undeformed configuration, is reported in Figure 6 as a function of Me along
with the fracture criteria [7-9]. The angle increases with increasing mode II
loading as it is generally observed experimentally. The FE results lie



slightly below the fracture criteria but are again not far from the maximum
hoop stress criterion. The radial and angular discretization probably play a
role in determining this difference.

Figure 5: First steps of crack propagation.
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Figure 6: crack initiation angle predicted by FEM and by [7-9].
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CONCLUSIONS
A FE analyses of a mixed-mode I/II loaded crack was performed using a
boundary layer technique. Material damage was introduced using the non-
linear CDM model developed in [1]. The mixed-mode fracture envelope
predicted by the model is in good agreement with the maximum hoop stress
criterion. The CDM-predicted crack initiation angle instead lies sligthly
below that criterion.
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