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Abstract: The application of two-parametric fracture criterion to the problem of cracks 
limit equilibrium in homogeneous media or at an interface of two different materials is 
considered. The necessary condition of the crack tip limit equilibrium is the equality of the 
energy release rate and the rate of the energy dissipation by the bonds (the first condition 
of fracture). The second condition of fracture is the condition of the bond limit stretching at 
the trailing edge of the bridge zone. Based on these two fracture conditions t he regimes of 
the bridged zone and the crack tip equilibrium and growth are considered. The estimations 
of the equilibrium size of the bridged zone, the adhesion fracture energy and the critical 
stress (the interface strength) depend on the crack size are found. 
 
 
PROBLEM FORMULATION 
 
Let us consider a straight crack of length 2l  at an interface of two 
dissimilar elastic half-planes such that the crack is placed at |x|≤l , y=0. 
Assume that the uniform tensile stresses, σo, are applied at infinity normal to 
the interface. Consider segments of length d (end zones) adjacent to the tips 
of the crack (l -d≤|x|≤l , y=0). In these zones the surfaces of the crack 
interact with each other, which suppresses the crack opening. 
 The physical nature of the crack surfaces interaction is generally changed 
in dependence on the crack scale and distance from the crack tip. The 
interatomic and intermolecular forces are limiting mechanisms of the 
surfaces interaction at the small distances from the crack tips while 
“mechanical” forces prevail at relatively larger distances. These mechanical 
forces can be caused, e.g., by reinforcing action of fibers in composites or 
polymer chains connecting the crack surfaces in polymer-polymer joints or 
polymer joints with other materials (metals, ceramics, etc.). 
 To mathematically describe the interaction between the surfaces of the 
crack, we assume that there exist bonds between the surfaces of the crack at 



the end zone. The law of deformation of these bonds, which is generally 
nonlinear, is given. 
 Under the action of external loads, the stresses Q(x) appear in the bonds 
between the surface of the interface crack at the boundary between different 
materials. These stresses have normal qy(x) and tangential qx(x) components 
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The surfaces of the crack are acted on by the normal and tangential stresses 
are numerically equal to these components. 
 The opening of the interface crack, u(x,0)=u(x), can be written as follows 
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where ux, uy are the projections of the crack opening on the coordinate axes 
x and y, respectively; u+

x, u+
y and u-

x, u-
y denote the components of the 

displacements of the upper and lower crack surfaces. 
 The relation between the crack opening and bond tractions (the bond 
deformation law) is given as follows [1-2] 
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where i=x or i=y for tangential and normal directions; the functions ci can 
be considered as the effective bond compliances in the directions of the 
coordinate axes; γi are the dimensionless functions, H is a linear scale 
proportional to the bonding zone thickness; EB is the effective Young 
modulus of the bonds. 
 The crack opening and bonds stresses along the crack end zone can be 
determined from solution of the singular integral-differential equations 
system [1-2]. Below is supposed that all these functions have already 
known. 
 
TWO PARAMETRIC FRACTURE CRITERION 
 
The potential energy of the body containing a crack with bridged zone can 
be written as follows (in the absence of body forces) 

 ∫ ∫ ∫+−=Π
v s s

iiij

e i

dsudsutdvw )()( φε ,         (4) 



where w(εij) is the density of the deformation energy in the body volume v, 
εij are the components of the strain tensor; ti, ui are the tractions and 
displacements at the body boundary se; φ(u) is the density of the strain 
energy of the bonds in the crack end zones, u is the crack opening in the end 
zones of area si. 
 The crack limit equilibrium corresponds to the following condition 
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 The last term is the rate of the energy absorption in the crack end zone 
and is associated with the energy necessary to create a unit of its new 
surface. The remaining terms represent the energy release rate at creation of 
a new crack surface. 
 Note, that within the framework of the model the rate of the energy 
absorption depends on the end zone size and bond characteristics. The 
equilibrium end zone size is not assumed to be constant. It can be 
determined from condition (5) while searching for the critical load needs 
additional conditions of the bond rupture. 
 The energy release rate in case of an interface crack under the external 
load σo and the stresses -Q(x) applied to the crack surfaces in the bridged 
zone can be written as follows [3] 
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where 22
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IIIK , are the 

stress intensity factors due to the external load and the stresses in the crack 
bridged zone). The stress intensity factors IIIK ,  are determined by [1] 
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 Let us calculate the rate of the energy absorption for an interface crack 
with bonding. Denote by Ubond(d,l ) the work of bond deformation and by 
Gbond(d,l ) the rate of the energy absorption per unit thickness of the body. 
Then 
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where b is the body thickness. 
 Note, that differentiation in formula (8) is performed with respect to the 
upper limit of the integral. Hence, it is assumed that the crack advance is 
accompanied by the crack end zone increasing such that the trailing edge of 
the end zone remains unchanged and placed at x=l -d. 
 The density of the strain energy of the bonds is equal to 
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 Substituting expression (9) in formula (8) and taking into account that 
uy(l )=ux(l )=0 at the crack tip we obtain 
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 Taking into account formulae (6) and  (10) the condition of the crack tip 
limit equilibrium (5) can be rewritten as follows 
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 Condition (11) is necessary but insufficient for searching for a limit 
equilibrium state of the crack tip and the end zone. This condition enables 
us to determine the end zone size, dcr , such that the crack tip is in an 
equilibrium at the given level of the external loads. 
 To search for the limit state of both the crack tip and end zone within the 
framework of the model one should introduce an additional condition, e.g., 
the condition of bond limit stretching at the trailing edge of the end zone 
xo=l -dcr 
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where δcr is the bond rupture length. 
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at a certain end zone size, d, and 
 

u(l -d)<δcr            (14) 
 

then the crack length increases with the end zone growth up to the size dcr 
without bond rupture. This stage of the crack growth can be treated as the 
system shakedown to the given level of the external loads. 
 The crack tip advance with simultaneous bond rupture at the trailing edge 
of the end zone occurs if both conditions 
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and (13) are fulfilled. 
 The regime of bond rupture at the trailing edge of the end zone without 
the crack tip advance is observed then conditions 
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and (15) are fulfilled. In this case the size of the end zone decreases and 
tends to the limit value dcr at the given load. 
 The end zone size and crack length are reserved within the framework of 
the model if the inequalities (14) and (16) hold. 
 Thus, the bond rupture characteristics and load level determine the 
fracture regimes: the crack tip advance with the end zone growth; end zone 
shortening without the crack tip advance; the crack tip advance and bond 
rupture at the trailing edge of the end zone. 
 Autonomy of the end zone [4] appears if the rates of the crack tip 
advance and bond rupture at the trailing edge of the end zone according to 
conditions (11) and (12) coincide. 
 
COMPUTATION RESULTS 
 
Solving jointly Eqs. (11-12) we can determine the critical external loads σo, 
the end zone size dcr and the adhesion fracture resistance at the crack limit 
equilibrium state for given crack length and bond characteristics. The 
following material parameters are used in the numerical analysis: 



E1=2 µ1(1+ν1)=140 GPa, ν=0.278 (silicon), E2=2 µ2 (1+ν2)=1GPa, ν2=0.35 

(polymer), γ1,2(s)=1. The parameters of the bridged model were chosen as 

follow (see detail in [5]): the intermediate layer size is NaH = =10-6m, 
where a=10-8m is the length of a statistical segment of the polymer, 
N=10000 is the polymerization index, the bond rupture length (critical crack 
opening) is δcr ≈ 5*10-6m. To evaluate the bond compliance c=cy =cx we 
suppose that the stiffness of each polymer molecules the same for normal 
and shear loading and one is ccrs UFK /= , where Fcr=10-9N is the critical 

force for bond breaking and NaUc =  is the total length of the free polymer 
chain after tension (in supposing of a small strain). For temperature T=323K 
and the prescribed values of the polymer characteristics we obtain 

mNK s /10 5−≈ . Supposing that the density of the interface bonds is 

oN =0.2*1018 m-2 we can get the effective stiffness of the interface bond as 
312 /10*2 mNNKK os ==  and the bond compliance 

./10*5.0/1 312 NmKc −== Then, we can compute the effective module of 
the bonds as .2/ MPacHEb == The results of the computation for the 

initial crack size 2 0L =1 mm are presented. The distribution of the relative 

critical stress 
crσ

σ0 (where HE crBcr δσ = ) versus the relative crack 

size 0/ LL  is given in Figure 1. The fracture stress monotonically decreases 
with the crack size increasing. It should be noted that in the contrary to 
Griffith theory we have the finite fracture stress for a plate without crack. 
The distribution of the adhesion fracture resistance (the critical energy 

release rate, see Eq. 11) ∞
bondcrbond GdG /),( l  (where crcrbond uG σ5.0=∞ ) 

versus the relative crack size is given in Figure 2. The noticeable changing 
of the adhesion fracture resistance observes only for the relative short cracks 
( 4/ 0 <LL ). For the long cracks this value approaches to the steady-state 

quantity ∞
bondG . For chosen material parameters we can obtain =∞

bondG 25 

J/m2. The relative end zone size ( Hdcr
310− ) at the crack limit equilibrium 

vs. the relative crack size is given on Figure. 3. For the short cracks (or 
other word - for the cracks with relative soft bonds) this value changes 
rapidly but for the long cracks one has gradual changing and for large cracks 
this value limits to constant quantity as in homogeneous media [6]. This is 
the confirmation of the end zone autonomy hypothesis [4]. 
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Figure 1: Fracture stress vs. the relative crack size 
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Figure 2: Adhesion fracture resistance vs. the relative crack size 
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Figure 3: Relative end zone size vs. the relative crack size 


