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Abstract: A generic study of the relationship between fracture toughness and microstructure
of ductile metals has been performed using a continuum damage model in a 2D small scale
yielding finite element setting.  The damage model is an enhanced Gurson model
incorporating void shape effects and a micromechanical law for void coalescence.  Emphasis
is placed on cracking initiation.  The results agree very well with recent calculations by
Tvergaard and Hutchinson based on a finite element analysis which explicitly incorporates a
row of voids in the discretization.  The effect of the flow properties and of the void shape on
the fracture toughness is discussed.  Transition between a void by void growth and a multiple
void interaction is analysed. The paper also addresses the difference between the fracture
toughness at true cracking initiation and the fracture toughness defined in an engineering
sense, i.e. after a given amount of crack propagation.

INTRODUCTION

In the context of material science, the fracture toughness at cracking initiation is
considered as the relevant parameter for indexing the fracture resistance of
materials.  The J integral at cracking initiation, JIc, is employed to characterize the
toughness of ductile alloys that exhibit significant amount of crack tip plasticity.  In
general, J is measured experimentally as a function of the crack extension, i.e. the
so-called " JR-curve" method.  The full JR-curve obtained on laboratory specimens
provides three important quantities: (1) the initiation toughness JIc, defined in an
engineering sense, i.e. for a predetermined amount of crack growth, or, if it can be
detected, at the physical event of cracking initiation; (2) an average tearing
resistance dJ/da; and (3), when sufficient crack growth is allowed and sufficiently
large specimens are used, the steady state fracture toughness, Jss.  In real specimen
configuration, the intrinsic character of the JR curve is, at best, limited to very small
amount of crack extension. This paper addresses the material science point of view
by studying the crack initiation toughness of ductile metal alloys failing by plastic
void growth and the relationship with the microstructure.  Of course, several aspects
will be directly relevant for the "structural point of view" where emphasis is placed
on integrity assessment rather than on the determination of material property.

Fig. 1 depicts the model envisioned for the cracking of ductile metal failing by a
void growth mechanism.  The initial geometry is a pre-crack of opening δ0 in an
ideal material having regularly distributed voids with spacing X0 and radius R0 in the
crack plane.  The flow properties of the material are characterized by the ratio of the



Young's modulus divided by the yield stress, E/σ0, the Poisson ratio, ν, and a strain
hardening exponent n.  The dimensionless microstructural parameters are χ0 = X0/R0,
W0 = Rz0/R0, and λ0 = Z0/X0.  The porosity f0 is univocally related to these variables.
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Figure 1: initial geometry of a precrack in an ideal material with regularly
distributed spheroidal inclusions.

Except for the high porosity limit case of a "multiple void process", i.e. a row of
voids interacting and coalescing at the same time, for which the state of stress in the
fracture process zone is almost uniaxial straining [1,2], the problem of Fig. 1
requires full numerical analysis of a crack tip blunting process coupled with a
fracture process zone model.  The present work follows previous computational
studies pursued by several groups in France, Germany, U.K., Denmark, and in the
U.S. (e.g. [3-10]), based on a continuum damage model implemented in a finite
element code to simulate ductile tearing. One of the main problem encountered with
this approach is the difficulty to properly introduce a length scale related to the
spacing between defects within the constitutive model.  The most simple way, but
not the most rigorous, to introduce the length scale is to fix the element size along
the crack path. This approach has been successful for simulating crack growth and,
more specifically, for rationalizing constraint effects.  However, the "material
science point of view" of understanding the relationship between fracture toughness
and microstructure is usually not much emphasized.

In this paper we explore trends in toughness in the case of 2D small scale
yielding plane strain conditions. Two new aspects are introduced in the present
analysis that have not been considered in previous modeling efforts devoted to
linking the fracture toughness to the microstructure (e.g. [1,11-13]): (i) void shape
effects (non-spherical voids ranging from penny-shape cracks to highly prolate voids
are common in industrial metal alloys. Generally, forming processes also bring
about a preferential orientation for the principal axis of the second phases and induce
some degree of anisotropy in the void distribution.  Furthermore, initially spherical
void tends to elongate at low stress triaxiality and flattens at high stress triaxiality);
(ii) A micromechanically-based void coalescence model involving the relative void
spacing.  This work also improves and extends former analyses which were based on
a more approximate analysis of the coupling between damage and the crack tip state
of stress [14].



The plan of the paper involves (i) a presentation of the model and of the
computational methods; (ii) a critical assessment of the model towards recent
calculations by Tvergaard and Hutchinson [2]; (iii) a synthesis of the main results of
a generic 2D SSY study of the dependence of the fracture toughness on the flow and
microstructural parameters of the models:
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This section will also incorporate results dealing with the difference between the
engineering toughness defined after a predetermined amount of crack growth and the
physical toughness at the "true" cracking initiation.

VOID GROWTH MODEL AND COMPUTATIONAL METHODS

An enhanced model for void growth and coalescence.  The extended Gurson model
used in this paper to account for the effect of the growth and coalescence of voids on
the behavior of the material has been presented in details in ref. [15-17].  It is based
on the works by Gologanu et al. [18] for the account of the void aspect ratio and by
Thomason [19] for the onset of coalescence with extensions to strain hardening and
for the modeling of the coalescence process. The model is based on two different
solutions for the growth of a void in an elastoplastic material, one solution is called
"void growth" and corresponds to a regime of "diffuse" plasticity around the void
and the other is called "void coalescence" and corresponds to localized plasticity in
the intervoid ligament.  These two solutions can be expressed under the form of two
different plastic yield surfaces supplemented by evolution laws for the internal
variables of the model (the porosity f, the void aspect ratio W, the relative void
spacing, χ and the mean yield stress of the matrix material σy) and the normality rule
for the plastic strain increment.  The mode of plastic deformation changes from
"void growth" to "void coalescence" when the yield surface intersects at the current
loading point.  These two yield surfaces are
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The yield surface Φgrowth is the enhanced Gurson-type surface derived by Gologanu-
Leblond-Devaux [18] and extended to strain hardening materials in ref. [15].  The
yield function Φcoalescence has been developed in the spirit of seminal work by
Thomason, extended to the full coalescence response and to strain hardening.  The
symbol • represents the von Mises norm, Σ' is the deviatoric stress tensor, Σh is
a generalized hydrostatic stress, X is a "void rotation" tensor.  Analytical



relationships link the dummy parameters C, η, g, κ, h1, α2 to the state variables W
and f. The following uniaxial response has been chosen for the present study :

σ
σ0

 =  
Eε
σ0

  when σ <  σ 0
, (4a)

σ
σ0

 =  1 +  
Eε p

σ 0

 

 
  

 
 

n
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, (4b)

Note finally that the model assumes that voids are present from the beginning of
the loading and that the failure process ends by void impingement (i.e. no account is
taken for other mechanisms such as local cleavage or second population of voids)
that may accelerate coalescence.

A 2D small scale yielding analysis.  The model described in the previous section has
been implemented in the general purpose finite element code "ABAQUS Standard"
through a User defined material subroutine (UMAT) with a fully implicit integration
scheme [20].  An "infinite" cracked solid is modeled using a semi circular finite
element mesh whose radius R is 107 times larger than the size of the representative
element size in the fracture process region (see Fig. 2). Displacement rates
corresponding to mode I plane strain K-field solution were prescribed on the outer
boundaries while the crack surface is left traction free.  A regular mesh with constant
element size was designed in the near crack tip region.  The crack tip is a round
notch of diameter δ0.  In this paper, results will presented only for δ0/X0 = 0.1 (i.e. a
sharp initial crack simulating a fatigue precrack).

K field

Figure 2: The 2D small scale yielding finite element model.

About the fracture length scale.  The damage model used in this work has no length
scale.  To introduce a length scale, each element in the near tip region is viewed as a
representative unit cell of length X0 containing a single void (the damage model as
been shown to adequately represent that situation when the cell is subjected to
uniform displacements [15]).  X0 is the only length scale entering the analysis (when
keeping the shape of the elements fixed for all calculations).  All the results in this



paper will be normalized by X0 which thus totally evacuates the dependence of the
results on mesh refinement.  Now, assimilating the element size to X0 is obviously
an approximation (because of the large strain gradients in fracture process zone)
whose validity will be checked by the validation study described in the next section.

VALIDATION OF THE MODEL

In a recent report [2], Tvergaard and Hutchinson describe 2D SSY FE simulations of
fracture initiation and tearing in J2 elastoplastic materials.  A single row of
cylindrical voids was explicitly introduced within the FE mesh as shown in Fig. 3.
A fracture criterion is postulated for the final failure of the ligaments.  Tractions in
the ligaments are released for an imposed reduction, R, of the initial ligament length.
Typically R was chosen equal to 1/2 or 1/3.  That study offers a means to critically
assess the model proposed in this paper.  For that purpose, the failure criterion based
on the reduction of ligament length was introduced in our model.  The same
parameters for the flow properties and initial microstructure have been used : σ0/E =
0.003, n = 0.1, W0 = 1, λ0 = 1.

Figure 4. Finite element mesh used by Tvergaard and Hutchinson [2].

Fig. 4 compares the results for R = 1/2 and R = 1/3.  The variations of JIc/σ0X0 as
a function of f0 are very similar. The model predicts slightly larger normalized J.
The good agreement between the two models means that the present model correctly
capture the transition of failure mode described in [2] : at sufficiently high porosity,
the void near the tip is influenced by its nearest neighbor, which experiences almost
the same rate of growth.  The interaction among the voids, including voids even
farther from the tip, results in significantly higher rate of void growth for all of the
voids.  Coalescence between several voids and with the crack will start early and be
almost simultaneous.  This is the multiple void interaction mechanism.  For
sufficiently small void volume fraction, a single void process prevails, which is
essentially the process modeled by Rice-Johnson [11].  The void nearest the tip
grows with little influence from its nearest neighbor further from the tip.  The
increase of the normalized toughness with decreasing porosity is more marked.  This
is the void by void growth mechanism.



On Fig. 4 results have also been plotted for computations performed with damage
in the entire material.  The results are very similar to those obtained with one row of
voids.  However, we point out that during crack propagation the effect becomes
significant: having voids on both sides of the fracture process zone tends to relax the
stresses and to delay the localization, involving thus larger tearing resistance.
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Figure 4: Variation of the fracture toughness as a function of the initial porosity,
comparison with results by Tvergaard and Hutchinson [2].

Fig. 4 also shows results for R=0, i.e. final failure by impingement of voids with
crack.  The effect of R is important.  The parameter R is strongly material dependent.
In typical steel, second population of voids or micro-shear localization lead to
premature ligament failure and values of R larger than 1/3 may be realistic.  In other
materials voids grow until final impingement with the crack.  In this work, the value
of R will be kept constant equal to 0.  The results will thus give upper bound for the
toughness of materials presenting some degree of "ligament embrittlement".

2D SSY PLANE STRAIN FRACTURE TOUGHNESS CALCULATIONS

Effect of the flow properties.  Fig. 5a shows the effect of the ratio σ0/E on JIc/σ0X0
for n = 0.1.  As expected from previous analyses [1] the toughness is proportional to
the yield stress.  Fig. 5b exhibits the effect of the strain-hardening capacity on the
fracture toughness for a material with σ0/E = 0.003, ν = 0.3, W0 = 1, λ0 = 1, and n =
0, 0.1 and 0.2. The strain hardening exponent is a very influent parameter.

The fact that the fracture toughness is proportional to the yield stress (Fig. 5a)
seems to contradict many experimental evidences showing that the toughness
usually decreases with increasing σ0. First, in many materials, an increase of σ0 is
accompanied by a decrease of the strain-hardening capacity n.  This is the case, for
instance, in the age hardening of aluminum alloys (where precipitates responsible
for the strengthening do not, in general, take part to the failure process and thus do
not modify the initial void volume fraction).  When comparing Fig. 5a and 5b, it



appears that the decrease of n can compensate or even dominate the effect on the
toughness of an increasing yield stress.  Secondly, the present model does not
incorporate a damage nucleation stage.  An increasing yield strength will affect the
nucleation by raising the stress on the second phase particles or grain-boundary.
Larger yield stress can also favor nucleation on smaller particles or on a second
population of particles at an earlier stage of the deformation.  However, it is clear
that when all other parameters of the microstructure are kept constant, higher yield
stress directly implies larger amount of energy spent in the fracture process zone to
deform, damage and separate the material.
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Figure 5: Variation of the fracture toughness as a function of the initial porosity
for (a) different yield stress and (b) different strain-hardening exponent.
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Figure 6: Effect of the initial void shape on the fracture toughness.

Void aspect ratio effect.  Fig. 6 presents the variation of JIc/σ0X0 as a function of f0
for different initial void shapes ranging from W0 = 1/10 (oblate) to W0 = 10 (prolate),
for σ0/E = 0.001, n = 0.1, and λ0 = 1.  Prolateness tends to delay void coalescence by
affecting the constraint in the ligament between the voids and also because, at a
given porosity, a prolate shape implies larger void spacing.  The results of Fig. 6 can



be used to address the variation of the fracture toughness as a function of the loading
direction for rolled plates with preferential orientation of the second phase.

Physical versus engineering fracture toughness.  The "engineering" definition of JIc
implies that initiation is associated with a fraction of a millimeter or so of crack
growth, which can amount to multiple void spacings for materials with closely
spaced voids.  The problem of the difference between the "first coalescence"
estimate of the initiation toughness and the JIc defined on the basis of 0.2mm crack
advance is depicted on Fig. 7 for two different materials with f0=10-3 and f0=10-4,
showing the difference of toughness for materials with X0=0.02mm or 0.2mm  The
difference between the true onset of cracking and the engineering definition in the
case of materials with small X0 (e.g. X0=0.02mm in the example of Fig. 7) is not
really an issue for structural integrity assessment but it is important when comparing
the toughness of different materials.
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Figure 7: The difference between physical and engineering fracture
toughness for two different materials with f0=10-3 or f0=10-4, considering

X0=0.02mm or 0.2mm

This consideration can, for instance, explain why experimental fracture
toughness values may sometimes seem extremely large when looking at the void
spacing X0.  For instance, Garrison and coworkers (e.g. [21] for a review) report
many examples of high strength steels with inclusion spacings between 1 to 10
microns (σ0/E in the range 0.001 range and f0 in the range of 10-4).  The reported
critical crack tip opening displacements are typically one to two orders of magnitude
larger than the void spacing (i.e. JIc/σ0X0=10 to 100). The reason is probably related
to the fact that, for such small void spacing, the criterion given by the Standards to
define initiation from a JR-curve gives a value of J that involves plenty of void
coalescence events. In that case, most of the energy involved in the engineering
fracture toughness is related to extrinsic plastic dissipation.  We also suspect that in



such materials constraint effects will affect the engineering fracture toughness when,
for instance, changing the specimen configuration.
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