
Assessment of the fatigue failure period
of a notched component

O.P. Ostash and R.V. Chepil

Karpenko Physico-Mechanical Institute, National Academy
of  Sciences of  Ukraine, 5, Naukova Str., 79601, Lviv,  Ukraine

ABSTRACT: The total period, Nf, to failure is considered, which includes the periods of
fatigue macrocrack initiation, Ni, and propagation, Np, i.e.: Nf  =  Ni + Np. Fatigue
fracture of materials has been modelled as a process of  initiation of a macrocrack of
length ai = d* (the magnitude of d* is a material constant), which is successively repeated
(step-by-step) during its growth. As a result the "local stress range, *

yσ∆ , versus

macrocrack initiation period, Ni " relationship, which was established for notched
specimens, might be applied to the determination of the "macrocrack growth rate, da/dN ,
versus effective stress intensity factor range, ∆Keff" relationship and vice versa.

INTRODUCTION

For life time estimation of a structural component  with an initial long
crack, when at cyclic loading crack of length a ≥ ai grows to the critical
length a = ac, macrocrack growth rates are studied only, see Figure 1(a).

Figure 1: Material endurance characteristics at various stages of fatigue.



This process is described by the relationship da/dN  versus ∆K in form of
curve 1 or curve 1' taking into account the crack closure effect. On the basis
of these curves the threshold characteristics ∆Kth, ∆Kth eff and the period
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the cyclic fracture toughness, which may be equal, less or larger than the
static fracture toughness K1c. The macrocrack period starts when the initial
crack  reaches the plastic (quasi-elastic) strained portion of the body and can
henceforth be described by LEFM conditions. However, when the initial
crack is small, a < ai, the growth of microstructurally short and physically
small cracks takes place [1]. These events are described by means of curves
2, see Figure 1(a). At a ≥  ai only, when the microcrack transforms to
macrocrack behaviour [2], its propagation law is illustrated by curves 1 and
1'. It was shown [2] that the prefracture (process) zone size d* regulates this
transition. The parameters for describing this process are not yet well
established, therefore the estimation of the macrocrack initiation period, Ni,
which includes the stages of microcrack growth and its transition to the
macrocrack of length ai = d*  was proposed [2]. This involves a two-
parameter process and, in the stress approach, it is determined by the local
stress range, *

yσ∆  ,  and the linear structural parameter, d*,  which is a

material constant for a given test condition [2]. The relationships *
yσ∆

versus Ni and d* versus Ni , shown in Figure 1 (b) by curves 1 and 2
respectively, establish the threshold magnitude of the local stress range,
( *

yσ∆ )th, when, at a stress concentrator, the initiation of the fatigue

macrocrack of length ai ≥ d* is not realized [2]. The relationships  ( *
yσ∆  v.s.

Ni) have such analytical representation [2]:
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Thus, the total period, Nf, to fatigue failure of a notched component may be
estimated as
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So, it is suggested at traditional approach that the processes of fatigue
macrocrack initiation and propagation are different, therefore they have
been considered separately. However, from our point of view, one essential
difference exists: at the macrocrack growth stage the crack closure effect
appears, but at the initiation stage (ai < d*) it is absent [2]. Nevertheless the
stages of the fatigue failure of materials, i.e. macrocrack initiation and
propagation stages, might be considered as a similar process, hence for their
description a unified approach may be applied.

UNIFIED APPROACH FOR ASSESSMENT OF THE PERIOD Ni

A macrocrack is modelled [3] as a sharp notch of root radius ρ, see
Figure 2,  noting that an analogous consideration has been used earlier. The
experimental data [3,4] revealed that for sufficiently small magnitudes of ρ
the number of cycles to macrocrack initiation does not  depend on the notch
root radius, when ρ is less than the certain value, a factor conditioned by the
material properties. The following assumption was advanced [3] that such a
state takes place when ρ ≤ d*,  where d* is the characteristic distance of the
prefracture (process) zone, which is independent of ρ [2]. In this case, a
macrocrack might be considered as a notch of effective radius ρeff = d*  and
the stress distribution at its tip is suggested  to be the same as for the
concentrator of radius ρ = d*, see Figure 2(a).



Figure 2: Stress distribution near the macrocrack tip (a) and a
scheme (b) of the macrocrack growth.

According to the proposed model [3], during cyclic loading in the
vicinity of the existing macrocrack tip the prefracture (process) zone is
formed, within which the macrocrack  increment of length ∆a = d* takes
place. It is assumed that the increment formation corresponds to that near
the geometrical (ρ >> d*) stress concentrator [2] for the case when a local
stress (or strain) range in the process zone is the same both at the notch and
macrocrack tips. This process is continuously  repeated and the crack for a
certain number of cycles Ni propagates a distance d* step-by-step, see Figure
2(b), where Ni is the period to macrocrack initiation of length ai = d* at the
notch tip [2].  For the given  stress-strain state at macrocrack tip, its
increment ∆a takes place during  ∆N = Ni  loading  cycles, and its extension
is equal to the characteristic distance d*, i. e. the crack growth rate, da/dN,
can be determined by the equation
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where Ni is  the initiation period of  macrocrack of length ai = d*, which is
assessed on the specimens with geometrical stress concentrators [2]. Thus,
the relationships *

yσ∆ versus Ni and d*  versus Ni  established at the
macrocrack initiation stage on the notched specimens due to the application
of the stress approach [2], determine simultaneously a macrocrack
propagation law.



Figure 3: A scheme for the calculation of  the fatigue macrocrack
propagation curve.

Consequently, it is possible by means of a sufficiently  simple calculation
to plot the fatigue macrocrack growth rates in case of equality of the local
stress range, *

yσ∆ ,within the process zone d* for both notch and macrocrack

tip, see Figure 3. It is supposed that for each pair of points Ai and ′Ai (i = 1,
2, 3 ... n) on the macrocrack initiation resistance curves, see lines 1 and 2 in
Figure 3(a), the correspondent point Bi can be obtained on the crack
propagation curve, see line 3 in Figure 3(b). Let us consider this procedure
in detail.

The principal condition that has to be used as a basis for the proposed
calculation scheme is the equality of  the local stress range, *

yσ∆ , in the
vicinity of both notch and macrocrack tip. Since the stress intensity range,
∆K,  is the parameter of the macrocrack propagation stage, see Figure 3(b),
it is necessary to establish the relationship between *

yσ∆  and ∆K range near
the macrocrack tip. For this purpose the well-known approximate formula
can be used
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where ∆σy(0) is the maximum stress range at the tip of  the sharp notch of
radius ρ; ∆K is  the stress intensity factor range for a crack of equivalent
length. The effective radius of the macrocrack tip, as was mentioned above,
see Figure 2(b), is given by ρeff = d*  and the maximum stress range equal

*
yσ∆ . Taking into account such a consideration and Eq. 4 then the following

formulation can be used  for *
yσ∆  (without closure near the crack tip)

,/128.1 ** dKeffy ∆=σ∆      .886.0 ** dK yeff σ∆=∆     (5)

Now, after the values of  *
yσ∆ , Ni,  d*  (co-ordinate of points A1 and ′A1  in

Figure 3(a)) were established and using Eqs 3 and 5 the corresponding
values of da/dN and ∆Keff (co-ordinate of point B1 in Figure 3(b)) can be
calculated. Carrying out the similar calculations for points A2, A3 ... An, the



co-ordinate of points B2, B3 ... Bn can be established, i. e. the crack growth
rate curve da/dN  versus ∆Keff can be determined from this procedure.

When testing the mild 08kp steel, it was revealed that the curve (the solid
line in Figure 4), calculated via the scheme in Figure 3 using the data
established at the macrocrack initiation stage at stress ratio R = 0.1,
coincides with the experimental curve da/dN versus ∆Keff, established at R =
0.1 within the low amplitude and threshold regions (see symbols  in
Figure 4). It coincides as well with the crack growth rates da/dN versus ∆K
established from tests at R = 0.7 (see symbols ∆). Obviously, this
coincidence can be explained by the absence of the crack closure effect at
the macrocrack initiation stage, contrary to the propagation stage [2], when
it disappears in  the threshold region only at stress ratio 0.5 ≤  R ≤ 0.7.

Figure 4: Prediction (solid curve) and experimental values (symbols) of the
fatigue macrocrack growth rate in mild 08kp steel.

The above described correlation between the macrocrack initiation and
propagation stages, see Figure 3 and 4, allows one to perform a reverse
calculation scheme: assessment of the period Ni to fatigue macrocrack
initiation near the stress concentrator using the da/dN versus ∆Keff
macrocrack propagation curve. Taking into account the specimen geometry,
see Figure 5, for the given load range ∆P the nominal stress range ∆σN  =
f (∆P, W, t) is calculated,  where W and t is the specimen width and
thickness, respectively. Then, the local stress range *

yσ∆  near the tip of
concentrator can  be determined  for the given value of ρ
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where Kf  − fatigue stress concentration factor estimated by means of Kt, d*

and ρeff values [4]. Hence, by Eq. 5 the value of ∆Keff is calculated, which
makes it possible to estimate the corresponding value of da/dN  from the
experimental curve da/dN versus ∆Keff ,  which analytically can be
represented for given material by  equation

da/dN = B(∆Keff - ∆Kth eff)n.                                              (7)

Then from Eq. 3 we have

)//(* dNdadNi = ,                                                          (8)

thus the number of  cycles Ni to initiation of a macrocrack of length ai = d*

can be assessed.

Figure 5: Prediction of the number of cycles Ni to fatigue
macrocrack initiation (length ai = d*) at the given load range ∆P
(curves 1, 2) and the corresponding experimental data (symbols)
for a compact disk specimen of  ρ = 0.75 mm (curve 1 and symbol



); ρ = 4.0 mm (curve 2 and symbol ) of  aluminium 1420T1
alloy

It is shown, see Figure 5, that the results of calculation and experimental
data are in good agreement.
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