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ABSTRACT: Asymptotic behaviour of the elastic solution in a vicinity of the interface
crack tip lying at a nonideal interface is investigated. The interface is assumed to be
essentially stiffer in comparison with the bonded elastic materials. Additionally,
inhomogeneity of the interface material is taken into account. The simplest case of the
Mode III deformation is under consideration. It is shown that the main terms of asymptotic
behaviour are practically similar to those in the case of the ideal interface (but with
different SIFs in each materials). Moreover, for some special loading there is no  difference
between the models at all. However, in a general case, additional singular terms of stresses
can appear for the stiff nonideal interface model.

INTRODUCTION

Plane interface crack situated at the ideal interface is a classic problem of
fracture mechanics. The classic ideal interface approach consists of
assumptions that the interface is of zero thickness and the vectors of
displacements and tractions satisfy the continuous transmission conditions.

However, in frames of the ideal interface approach it is impossible to
take into account the mechanical properties of the bimaterial interphase
itself at least at the stage of finding distributions of the stress or
displacement fields near the crack tip.

There are several nonclassical interface conditions obtained by different
techniques taking into consideration geometrical and material properties of
thin interphase zones [5-10]. Nevertheless, only in [8-10], first attempts
have been independently made to analyse the asymptotic behaviour of the
solutions near the interface crack tip situated at the so-called soft (weak)
nonideal interfaces. Corresponding transmission conditions were written in
the form: 0][ =

Γnσ , ( ) 0)(][ =−
ΓnsMu σ , where (n,s) were the normal and

tangential coordinates along the nonideal interface Γ , while matrix )(sM
depended on mechanical and geometrical features of the thin interphase.

In the next section we obtain transmission conditions for thin stiff
interphase of the constant thickness consisted of inhomogeneous elastic



material. Asymptotic behaviour of the elastic solution near the interface
crack tip in the simplest case of mode III deformation is analysed in the
third section. Finally, we discuss possible application of the investigated
model in fracture mechanics.

EVALUATION OF TRANSMISSION CONDITIONS

Let us consider a bimaterial solid presented  in Fig. 1. The shear moduli of
the bonded homogeneous isotropic elastic materials are +µ  and −µ ,
respectively.

Figure 1. Bimaterial solid with thin stiff interface

It is assumed that a characteristic size of the body L  is essentially larger
than the thickness of the intermediate zone h . Thus,

0hh ε= ,  Lh ~0    10 <<< ε . (1)

Material of the interface is assumed to be inhomogeneous and isotropic with
the shear modulus ),( yxµµ =  which is essentially stiffer in comparison
with both the bonded materials:

0
1µεµ −= ,     −+ µµµ ,~0 . (2)

To obtain the respective transmission condition let us rescale the variable
εξ=y  within the interphase 2/2/ hyh <<− . As a result, displacement

),,(),( ξε xwyxuz =  has to satisfy the equilibrium equation:
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where xD , ξD  are the respective partial derivatives. Additionally, the
following boundary conditions have to be fulfilled along the respective
boundaries of the thin intermediate layer:
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Solution of the problem has to be sought in form of series:
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Here, ±u  and ±
yzσ  are displacements and stresses acting along the interface

boundaries within the respective materials. They should be represented in
the similar series (5). As a result of this procedure, a sequence of the
boundary value problems for each function iw  is obtainable.  Each of these
BVPs is able to be solved only under additional conditions which, in fact,
constitutes the sought for transmission conditions. In the case under
consideration they take the following form:
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Here by ][ f  we, as usual, understand the jump of a function f  across  the
interface. It is important to note that transmission conditions similar to (6)
can also be obtained by applying the standard thin bar approach.  Namely, if
the thickness and the shear modulus of the thin layer depend only on the
variable x , this approach leads to the conditions of the form:

    0][ =u ,      ( ) 0)()(][ =⋅+ uDxxhD xxyz µσ , (7)

which completely coincides with (6) in case consth = , )(xµµ = .
However, asymptotic approach (1) – (6) enables us not only to evaluate the
respective transmission conditions, but also to estimate its  accuracy. (For
example, condition (6)1 is true with the accuracy )( 2εO ). In frames of the
approach, the solution can be constructed with an arbitrary accuracy.
Moreover, the asymptotic procedure can be slightly corrected to justify
transmission conditions for anisotropic, inhomogeneous interface with



varying thickness. Natural question is: what the difference with respect to
the stress singularity arises between the classical interface crack formulation
and the considered stiff nonideal interface approach.

MODELLING PROBLEM

In order to investigate the behaviour of the solution in an arbitrary interface
crack problem with the stiff nonideal interface it is enough to solve the
respective modelling problem for the infinite bimaterial plane with a semi-
infinite interface crack (see figure 2). Materials of the half-planes 0>y  and

0<y  are homogeneous and isotropic with the shear moduli +µ  and −µ .

Figure 2. The nonidel interface along the crack line ahead.

Along the crack surfaces tractions are given:
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Here we have introduced the polar coordinates ),( θr  as shown in the figure
2. Known functions )(rg±  have to satisfy equilibrium condition (8)1.

Transmission conditions along the nonideal interface follow from (6):
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Such conditions make possible for us to investigate the asymptotic
behaviour of elastic solution for the stiff nonideal interface characterized in
a vicinity of the interface crack tip by the condition: ατµ rrhr ~)()( , 0→r

+µ

−µ

r



( ∞<≤ α0 ). Here, the case 0=α  is the most important one. It corresponds
to no damaged interphase of a nonzero thickness near the crack tip. On the
other hand, the case 0>α  has its own interest. Namely, with these
conditions one can investigate the influence of the interface geometry or a
damage effect appearing near the crack tip.

Solution of the problem
Applying the standard Mellin transform technique to the Laplace equation
within the respective domain on taking into account the boundary and
transmission conditions one can eventually obtain a functional equation for
the problem under consideration:
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Here )1(~)( += ±+ sgsG is the standard Mellin transform while

−= µττ /* ,    −+= µµµ /* ,      (11)

are newly introduced dimensionless parameters. Moreover, )0()0( −+ = GG
due to the equilibrium condition (8)2, so the right-hand (10) is an analytical
function at zero point.

Similarly as it has been done in [8,9] we are able to prove that the
functional equation (10) has a unique solution for any value of the
parameter α . This solution is an analytical function in some strip

∞<ℜ<− ωω s0  containing the imaginary axis. The values of parameters
0,0 >∞ωω  depend on α  and play an important role in the further analysis.

If 10 <≤ α  then the function )(sF  has simple poles in the points:
5.10 −=−= αωs  and 1== ∞ωs . Its next poles in the left half-plane are

situated at points 2/1)1)(1( −−+=−= αω js j  ( ,...2,1=j ). As a result,
some of them in the case 15.0 <≤ α  belong to the strip 01 <ℜ≤− s .
Moreover, the number of such terms tends to infinity as 1→α .

In the case 1=α  one can conclude that the equation (10) is a linear one
and ),( **0 µτωωω == ∞ . Here, )1,5.0(),( ** ∈= µτωω  is the unique
positive solution of equation 0sin)1(cos ** =++ sss πµπτ  within the
interval )1,0( . Moreover, 1→ω  as 0* →τ  and 5.0→ω  as ∞→*τ .



Finally, if  1>α  then the function )(sF  has the only simple poles in the
points: 10 −=−= ωs , 2/1−== ∞ αωs .

Asymptotics of the elastic solution
When the solution of the functional equation (10) and its properties are
known, the sought-for displacement has to be calculated from the inverse
Mellin transform  in the respective half-planes ( ],0[ πθ ∈± ):
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where 0>δ  is a small arbitrary value. Using the information about possible
poles of the function )(sF , one can write the asymptotics of the elastic
solution near the crack tip in the following common manner ( ],0[ πθ ∈± ):
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In figure 3 the respective distribution of all stress singularity exponents
kλ  ( 5.0−=mainλ  and 1−= jj ωλ ) is shown together with the so-called T-

stress (when respective 0=jλ ) as a function of the parameter α . Let us
note that T-stress appears not only when 1>α , but also in the cases when

)2/(11 jj −≡= αα , ,...2,1=j .
Let us remind that in case of the ideal interface the only main stress

singularity 5.0−=mainλ  as well as T-stress appear. However, in case of the
soft nonideal interface elastic solution for the interface crack exhibits a more
complicated behaviour [8].



Figure 3. Distribution of the stress singularity exponents

DISCUSSIONS AND CONCLUSIONS

First of all let us note that in the case of the symmetrical loading
( )()( sGsG −+ = ) the equation (10) has the only trivial zero solution. As a
result, the interface crack problem with the stiff nonideal interface coincides
completely in this case with the solution for the ideal interface regardless of
the values of  α  and τ  under the mode III deformation. However, for an
arbitrary geometry of the finite bimaterial structure such a condition is
impossible to be realized.

When 0=α  (stiff nonideal interface of a constant local thickness and the
local material homogeneity near the crack tip) the only classical square root
singularity arises (without any T-stress), and the next term in asymptotic
expansion (13) can be estimated as )( rrO . Hence, one can investigate in
which material the interface crack will propagate (SIFs in the bonded
materials are different, in general) by any of the classic fracture mechanics
criteria.

However, the thickness of the interphase varies and can vanish at some
point where no adhesive presents between the materials. This is a natural
consequence of the fact that the surfaces of the matched materials are not
identical. This means that 0)( →rh  ( 0→r ) in local coordinates connected
with the point. The other effect can also appear when the shear modulus of
the interphase material tends to zero due to a damage accumulation near the
crack tip within the stiff interface. Both these cases lead to the same stiff
nonideal interface model with some 0>α . Unfortunately, the value of α  is
unknown a priori. However, in cases 5.00 <<α  one can conclude from
(14) that the model under consideration gives practically the same result
with respect to the stress singularity as in the case 0=α  (see figure 3). The
only difference being the values of SIFs.



If 1>α  the asymptotic expansion (13) coincides with that for the ideal
interface and the only respective constants C determining the T-stress are
different, in general. (Thus, this case can be naturally called the almost ideal
stiff interface as it has been done in [8] for the almost soft interface).

As a result, the influence of a possible damage effect or local interphase
geometry on the stress singularity would be visible only if 15.0 <<α . If we
assume a linear changing of elastic properties of the damaged interphase
then 1=α  and from (10) and (13) it follows that the main SIF is identical to
that for the ideal interface. However, the next singularity 1−=ωλ  depends
essentially on parameters *τ , *µ  disappears as 0* →τ , as could be
expected and becomes comparable with the main one when ∞→*τ .

Finally, it is important to investigate Mode I and II interface problem for
the stiff nonideal interface (6) in order to compare results with those for the
soft interface [9] and, particularly, to answer the question whether the
classic stress oscillation appears there (and for what value of α ) or not.
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