An assessment of the probability of root failures in
load carrying cruciform joints of duplex stainless
steel 2205

R. F. Martins® and C. M. Branco?

! New University of Lisbon, FCT/DEMI, 2829 Monte de Caparica, Portugal
2 |CEMS/IST, Avda. Rovisco Pais, 1049-001 Lisbon, Portugal

ABSTRACT: Fatigue life data and failure probability assessments in these types of joints,
fabricated from duplex stainless steel 2205, are comparatively scarce and, therefore, a
research study was initiated to assess the fatigue behaviour of load carrying joints of this
material and to obtain probability of failure data using the methods of Probabilistic
Fracture Mechanics (PFM). Probability of failure results was obtained both for the
situations of unstable fracture and fatigue crack growth. For fatigue crack growth, the
parameters used were the design stresses for three values of fatigue life (10°, 2x10° and 10’
cycles), using design curves of two codes, and also experimental S-N curve obtained by the
authors in the duplex 2205 material and corresponding to the lower fatigue curve for 95%
confidence interval. The K solutions were 2dFE J integral analysis, obtained by the
authors, and the BS7910 formulation. Sensitivity analysis of the probability of failure
results is presented in the paper.

1. INTRODUCTION

Due to high safety and operating costs related with a structural failure,
reliability studies of welded structures were published recently [1].
Probabilistic Fracture Mechanics can be used to quantify the probability of
failure of a structure. As referred in [1], the application of PFM requires a
considerable level of experience, since incorrect failure predictions can
happen, due to non-adequate valuable data values, such as fracture
toughness and other materials data, and also defect size and distribution in
the structure.

2. FUNDAMENTALS DEFINITIONS OF PFM

A structural failure is due to occur when the defect sizes in the structure are
greater than the safe values calculated with Fracture Mechanics. Assuming a



non-deterministic variation of both these kinds of defects, the failure
probability is calculated from the superposition between the two probability
density functions corresponding to the two above-mentioned variables (Fig.
1). The calculated value for the probability of unstable failure of the
structure in a given instant is given by the equation,
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In equations (1) and (2) n(x) is the probability density function of the
defects found in the structure, and g(x) is the probability density function of
the critical defects.

2.1 Probability Density Function, n(x), of the defects found in the
structure

The values of the parameters used in equations (1) and (2) were taken from

ref. [2], and were taken from a Weibull type of fitting of the depth of the

defects measured in a great number of welded joints in North Sea oil

platforms. These parameters have not taken into account the reliability of

the non-destructive method used for the measurement of the defects.

The following values were introduced in equation (2); 3=0.80; y=0.1 and
0=1.12 at instant t=0 when the structure enters into service. In service, and
since fatigue loading occurs, the initial probability density function will
change, since the initial defects will propagate and its size will change
(increase), and the geometry will change. Hence, new values of 3, y and n
should be introduced in equation (2). Alternatively, the actual propagated
dimensions of the initial defect distribution were calculated, assuming that
the probability of finding defects with a size equal or below the size of the
propagated defects was 100%, as shown in Fig. 1.

2.2 Probability density function of critical defects, g(x)

The probability density function of critical defects of structural high
strength steels, g(x), was calculated using 19 valid CTOD values, obtained
at the temperature of —20°C [3].
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Figure 1: Probabilitity density functions of the initial, actual and
critical defects. Probability of failure.

These values were obtained in several European laboratories from 1983
to 1997.

For an initial hypothesis,H,, CTOD values were calculated with a normal
distribution, with a significance level of 0.05 (04=0.05), i.e. with equations

Ho: CTOD — N(u,0) ©)
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where E (CTOD) and V (CTOD) are, respectively, the expected value and
the variance of the CTOD data. The expected value of the sample was
considered equal to the mean value of the CTOD values.

In a second hypothesis, the CTOD values were adjusted to a lognormal
distribution, and the equations are

P.d.f.(CTOD) =

Ho: CTOD - LN(W,o )
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The x? test was used to check the validity of the fitting of the sample
distributions to the theoretical ones. The number of classes, k, where the
sample size, n, was divided was calculated by the Sturges rule,
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The X test has shown that the sample values of CTOD could be fitted to
a lognormal distribution with a significance level of 0.05. The normal type
distribution did not provide satisfactory values, as also confirmed by the
plots in Fig. 2.
The probability density function of CTOD, &, was modified to the
probability density function of acceptable defects, g(x), using the CTOD
design curve. The transformation equations are,
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where Omax 1S the maximum stress in the structure, near the weld detail
under analysis, and includes the sum of the applied stresses with the residual
stresses; E is the Young’s modulus, and oy is the yield stress, respectively.

The probability density function of the critical defects, an, is therefore
given by,

am= CxCTOD com C>0 (cte.) e CTOD - LN(u,0) (11)
Y =CX « X=Y/CO dX/aY =1/C (12)

where the change in variables in the unidimensional case gives [4]



f, (V) = (Y 1C) | (13)

where fy is the probability density function of CTOD in the point Y/C.
Therefore, the probability density function of the critical defects, g(x) gives,
finally,

g(x)=Pd.f.(a,) =

a n(ay, /C)-ufC
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with a,/C>0, u and 0>0.

Since the probability density functions of the initial defects, n(x) and the
critical defects, g(x) were both obtained, the probability of failure may be
calculated with equation (1). Results obtained for a case study are presented
next.
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Figure 2: Probability density functions for the CTOD values.

3. RESULTS AND DISCUSSION

For a load carrying cruciform joint with full lack of penetration (Fig. 3a)),
failure probabilities were obtained for three values of the fatigue lives,
N=10°, N=2x10° and N=10' cycles, and assuming crack propagation from
the weld root through the weld metal. For the stresses, the values taken from
two design curves were chosen, namely the 11W class 45 and an S-N curve
experimentally obtained by the authors in previous work [5] and referring to
95% confidence limits for the data. This curve is plotted in Fig. 4.



An initial defect size at weld root, with depth equal to 1.13mm, was
taken, and the crack was assumed to propagate in the weld metal (Fig.3b)) at
angles of 45, 60, 75 and 90° with the axis of the longitudinal load direction
in the main plate (Fig.3c)). The value of initial crack size was obtained by
measurements at weld root in the fracture surfaces of the specimens (Fig.
3b)). Values of J and the linear elastic K were obtained with equation (15)
and (16). The stress intensity factor equation in BS7910 [6], Annex J, was
also used for comparison. Equation (15) was derived from J data obtained
with the 2D FE code ABAQUS. The elements at the crack tip have three
collapsed nodes and two intermediate nodes at ¥4 position.

Details of the mesh are shown in Fig. 3d), and the data was obtained for
angles of crack propagation of 45, 60, 75 and 90° and crack sizes of
a/w=0.125; 0.25; 0.375 and 0.5, where w is the weld throat length (Fig. 3c)).

J=AL.(a/w)*+A2.(a/w)*+A3.(a/w)*+A4.(a/w)+A5  [N/mm] (15)
Al=-1.1524x10"a+2.33218x1020%-1.509510+3.43544x10"
A2=1.09272x10"03-2.18932x10%0%+1.449220-3.24981 x10*
A3=-3.40489x10°0*+6.89327x10301%-4.48804x10 0 +1.02567x10"
A4=3.74761x10°03-7.07411x10*0*+5.06334x102-7.70296 %101
A5=3.19x10"

0<(a/w)<0.5, 45°<a<90°
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Values of the constants C and m of the Paris law were obtained

experimentally for a duplex grade stainless steel 2205, loaded in three point
bending [5], and the values are given in Table 1.

TABLE 1: Values of C and m of the Paris law

Ao [MPa] C [mm/cycle;MPa.m®?] m
250/200/120 9.68E-09 2.7816
80/ 60 3.10E-09 3.0811

A comparison between the two assumed S-N curves can be seen in Fig 4.
The experimental results give a very good fit with the 1IW class 45 design
curve for failure from the weld root in load carrying cruciform joints. For
this reason, negligible differences were found between the Ps results



obtained by the two types of S-N curves. Some of the more significant
obtained values of the probability of failure are given in Tables 2 and 3. The
remaining results are in [5].
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Figure 3: a) Geometry of the non-load carrying cruciform joint with full
lack of penetration. b) Macro of the fracture surfaces. Crack propagation
from the weld root. ¢) Boundary conditions and loading in the welded joint
of Fig. 3a). Definition of the parameters, a, w and a/w. d) Finite element
mesh (deformed and undeformed) to obtain the maximum value of the J
integral (case for a=75° and a/w=0.375).
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Figure 5: IIW design curve (Class 45) and experimental S-N curve.

TABLE 2 : Initial values of probability of failure, Py,

IIW Design Curve (Class 45) S-N Curve (95% lower limit)
Ao [MPa] | nitial Prob. Failure | Ao [MPa] | Initial Prob. Failure
122.1 1.556E-04 141.44 1.512E-04
44.98 7.680E-11 62.84 2.000E-09
26.3 1.310E-15 40.64 5.930E-13




TABLE 3: Probability of failure values for crack propagation between a; and a; values of
crack depth in the weld metal. a=90°. a;=1.13mm. Remaining parameters as in Table 2.

1IW Design Curve (Class 45)

Ncycles] | agna MM | agya [mm]™| Ao [MPa] | Prob. Failure™ | Prob. Failure! | aw®”| amw
10° 2.569 2.543| 122.093 1.762E-04 1.758E-04| 0.321| 0.318
2x10° 1.941 1.936 44.979 8.670E-11 8.660E-11| 0.246| 0.242
10’ 1.899 1.895 26.304 1.500E-15 1.500E-15| 0.237| 0.236

95% lower limit confidence S-N Curve
(5 ] b. Failure™ | Prob. Failure™ | aw™] a/w

N[cycles] | agna [MM]™ | agqq [mm]* | Ao [MPa] | Prob. Failure rob. Failure w w
10° 2.555 2.529| 121.771 1.711E-04 1.707E-04| 0.319| 0.316
2x10° 2.896 2.844 54.101 2.550E-09 2.530E-09| 0.362| 0.355
10’ 4 3.868 34.987 9.440E-13 9.240E-13| 0.5/ 0.4853

CONCLUSIONS

Both for static failure, under essentially brittle fracture conditions, and
in failure by fatigue, it is the stress range value that defines the level of
magnitude of the obtained probability of failure.

The stress intensity factor formulations of BS7910 for this type of joints
gave lower values of the probability of failure than the Ps values
obtained with equations (15), developed in this work.

Additional work is needed in this area and is currently in progress for
several types of mechanical components to get more insight in the
assessment of reliability or probability of failure.
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