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ABSTRACT: Systematic detailed non-linear finite element (FE) analyses are described for 
semi-elliptical surface cracks in plates under tension. Limit load solutions are obtained 
from the FE J results through the reference stress method. The results show that the 
response of J to load depends on the ratio a/t, where a is the crack depth and t the thickness 
of the plate. For a/t ≤ 0.5, J for any position along the crack front can be predicted by the 
reference stress method using a single limit load value, except for the points very close to 
the plate surface. For a/t > 0.5, J can only be approximately estimated because no single 
limit load value can be found to satisfy all the FE J solutions along the crack front. The 
limit load data obtained from this work can be well predicted by a global limit load 
equation developed by Goodall and Webster.  
 
 
INTRODUCTION 
 
In a structural integrity assessment using the R6 procedure [1], the limit load 
of the defective structure is used to define the Lr parameter. However, 
because the R6 method is based on the reference stress J-estimation 
approach, the limit load is not only a parameter for preventing plastic 
collapse (Lr < Lr

max) but also a key parameter in assessment against fracture. 
For a part-through defect, the limit load may be defined according to either 
the behaviour of the overall plastic deformation of the defective structure 
(global limit load) or that in the crack ligament (local limit load). The local 
limit load is always lower than or equal to the global limit load and, 
therefore, can yield a conservative result in an assessment. However, 
sometimes it may give an unduly conservative result and lead to 
unnecessary action.  
    Previous researchers (e.g. [2-4]) found that the global limit load led to 
better reference stress estimates of J than did the local limit load. However, 
the number of cases investigated was limited and the information obtained 
was not sufficient to give clear guidance for choosing the limit load in 



assessments. Moreover, the J solutions could be unreliable because different 
published results do not agree well and their use can lead to different limit 
load values for a given geometry. 
    In the present work, systematic detailed finite element (FE) analyses are 
performed to generate non-linear J solutions for semi-elliptical surface 
cracks in plates under tension. To determine the limit load of a cracked plate 
by the FE method, elastic-perfectly-plastic analysis may be performed and 
the limit load determined by the load-displacement response of the plate. 
However, this method is only efficient for determining the global limit load 
because the local plastic deformation may have little effect on the global 
displacement. Alternatively, non-linear analysis can be performed to obtain 
J values and the limit load then determined such that the FE J is well 
reproduced using the reference stress method [5,1]. The latter approach is 
used in this work. 
 
 
METHODOLOGY FOR THE DETERMINATION OF LIMIT LOAD 
 
In the reference stress method, J is related to Je, the elastic J, and the limit 
load, PL, for the defective structure via Eqs. (1) and (2) below [5, 1]: 
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where εref is the reference strain corresponding to a reference stress, σref, 
determined by the stress-strain relationship of the material, σ0 is the yield or 
0.2% proof stress, E is Young’s modulus and P is the applied load on the 
defective structure.  
    The limit load for a plate with a semi-elliptical surface crack under 
remote tension may be defined as 
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where w and t are the half width and the thickness of the plate, respectively, 
a is the crack depth and c the half length of the crack (see Fig. 1).  



    Substituting Eq. (3) into Eq. (2) leads to  
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where σ  is the remote tensile stress and P=2wtσ  has been adopted. Solving 
for Lr from Eq. (1) with known J and Je for a loading level σ/σ0, the 
function F can then be obtained from Eq. (4) for a given position on the 
crack front. J values may be obtained by inelastic FE analysis while Je may 
be obtained from elastic stress intensity factor (SIF), K, solutions via 
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where ν is Poisson’s ratio. Note that plane strain conditions have been 
adopted in Eq. (5) because constraint along a surface crack is generally 
strong. This equation may not apply to the points on the crack front near the 
plate surface where the constraint could be lower and plane stress conditions 
may apply.  
    It should be pointed out that F and hence PL, obtained from J, may 
depend on position, ϕ (Fig. 1), along the crack front, for given a/c, a/t and 
c/w. The choice of a suitable single value of limit load to represent the 
whole structure will be discussed later. 
 
 
FINITE ELEMENT ANALYSIS 
 
3-D FE analysis has been performed using ABAQUS [6]. The dimensions 
of the plate analysed are shown in Fig. 1 with w=4c and L=4w. For all 
analyses, c was fixed and therefore also w and L. The thickness of the plate, 
t, was changed according to the ratio a/t for a given a/c. Nine cases (a/t=0.2, 
0.5, 0.8 and a/c=0.2, 0.6, 1.0) have been analysed. The cracked plate was 
modelled by 8-noded brick elements. Because of symmetry, only a quarter 
of the plate was modelled. The crack tip was modelled using a focused mesh 
and J was evaluated at 11 positions along the crack tip in the region 
0°≤ϕ≤90°, each on 15 contours around the crack tip. J values presented in 
this paper are the average of all values obtained on the 2nd to 15th contours. 
The maximum difference between J values obtained on any contour and the 



average is less than 5% based on the average value. A Ramberg-Osgood 
type stress-strain relationship was used in the analyses, that is 
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where α and n are a material constant and the strain hardening exponent, 
respectively, σ0 is a normalising stress and ε0 is defined by σ0/E. In this 
work, the 0.2% proof stress has been used as σ0. For all analyses, α=1, 
E/σ0=500 and ν=0.3 were used. Two n values, 5 and 10, were examined. In 
all the analyses, small strain isotropic hardening was used with the Mises 
yield criterion. 
 
 
RESULTS AND DISCUSSION 
 
The method described in Section 2 has been used to evaluate limit loads at 
11 positions along the crack front. The normalised limit load, F(a/c,a/t,c/w), 
obtained from the reference stress method for selected cases, is plotted in 
Fig. 2 against the normalised load level. Each curve in Fig. 2 represents the 
limit load values needed to reproduce the FE J at a position on the crack 
front, ϕ, under various load levels using the reference stress method. Results 
for all other cases analysed can be found in [7]. 
    Firstly, cases for a/t ≤ 0.5 (Figs. 2(a) and (b)) are examined. From Fig. 
2(a), in the region σ/σ0  > 0.8, all the curves are horizontal, parallel to each 
other and almost collapse to one line, except for ϕ = 0. This indicates that a 
unique limit load value is sufficient to predict J for any point along the 
crack front except for points very close to the plate surface. In the region 
σ/σ0 < 0.8, the curves scatter into a band. This means that the response of 
inelastic J to load varies at different points along the crack front in this 
region and a limit load value different from that in the region σ/σ0 > 0.8 is 
required to reproduce the FE J values. However, in the small-scale yielding 
region, Je dominates and the total J is not sensitive to the value of the limit 
load. Therefore, limit load values determined in the region σ/σ0 > 0.8 can 
also be used to predict J for the lower loading levels without introducing 
significant error. Similar results can be found from other cases with a/t ≤ 
0.5, e.g. Fig. 2(b) where a/t = 0.5 and a/c = 1.0.  
    The cases where a/t = 0.8 (see Figs. 2(c)) are next discussed. From Fig. 
2(c), it is clear that in the region σ/σ0 > 0.8 all curves are approximately 
parallel to each other but are scattered into a band. This means that the 



response of J to load varies at different points along the crack front. 
Therefore, a different limit load value is necessary for each position along 
the crack front to reproduce the FE J values using the reference stress 
method.  
    The trends in Fig. 2 may be explained by examining the variation of J/Je 
with the crack front position, ϕ. The FE J results can be expressed as 
follows via a calibration factor h1 for a given material and geometry: 
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where Je can be obtained from the SIF, K, via Eq. (5). For a given geometry, 
K for a semi-elliptical surface crack in a plate under tension may be 
expressed as  
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where f is a geometry-dependent factor. Using Eqs. (7), (8) and (5), J/Je can 
be expressed as a function of ϕ: 
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From Eq. (9), the variation of J/Je is determined by the ratio h1(ϕ)/f2(ϕ) for a 
given geometry and material. Using factors f and h1 obtained from FE 
analyses in [7], the variation of h1(ϕ)/f2(ϕ) with normalised ϕ is shown in 
Fig. 3 for cases when n=5. 
    For a/t ≤ 0.5 (see Figs. 3(a) and (b)), the values of h1(ϕ)/f2(ϕ) for ϕ/(π/2) 
< 0.2 are much lower than those for other positions. For ϕ/(π/2) ≥ 0.2, 
h1(ϕ)/f2(ϕ) ≈ constant and, by comparing Eqs. (1) and (9), this enables J to 
be estimated for any position along the crack front in this region by the 
reference stress method with a single value of limit load. For a/t = 0.8 (see 
Fig. 3(c)), the value of h1(ϕ)/f2(ϕ) varies with crack tip position, ϕ. It is not 
possible to predict J for all crack front positions with one limit load value in 
this case. This is why a large scatter is seen in Fig. 2(c). 
 
 
 



LIMIT LOAD DETERMINED FROM FE RESULTS 
 
The limit load is a parameter characterising the behaviour of the whole 
structure. However, for a given crack geometry, the limit load values 
obtained from the reference stress method for different positions along the 
crack front are not always consistent with each other (e.g. Fig. 2(c)). A 
single value of the limit load may nevertheless be determined from the FE 
results using either of two methods. The first one determines the limit load 
value by considering the lower bound of the scatter band in Fig. 2. The 
second method determines the limit load value by considering only the point 
along the crack front with the maximum J.  A limit load may be determined 
such that the maximum J value along the crack front is well predicted via 
the reference stress method when this limit load value is used. As discussed 
above, only the data in the region σ/σ0 > 0.8 are used because the limit load 
values are more relevant to J in the large-scale yielding and post-yield 
regions than that in the small-scale yielding region. 
    The normalised limit load values determined from the lower bound of the 
scatter band (e.g. Fig. 2) are plotted against a/t in Fig. 4(a) and those from 
the point with the maximum J value in Fig. 4(b).  Comparing Figs. 4(a) and 
(b), it is found that the determination of limit load by the lower bound or 
from the maximum J has little effect on the data for a/t ≤ 0.5. However, for 
a/t = 0.8, the lower bound data lead to the factor F being 15% lower than 
that obtained from the maximum J values. Two available alternative global 
limit load solutions are plotted in Fig. 4 for comparison, one due to Goodall 
& Webster [8] and the other due to Sattari-Far [9]. From Fig. 4, the Goodall 
& Webster equation can predict the data determined from the maximum J 
values very well but over-estimates the lower bound data by about 15% for 
deep cracks. The equation proposed by Sattari-Far gives reasonably good 
prediction for shallow cracks but, clearly, is very conservative for very deep 
cracks. 
 
 
CONCLUSIONS  
 
The relationship between limit load and J has been examined by the 3-D 
finite element (FE) method and the reference stress J-estimation method for 
semi-elliptical surface cracks in plates under tension. The conclusions 
drawn from the results are as follows. 
1. The response of J to load depends on the ratio a/t.  For a/t ≤ 0.5, J for 

any position along a crack front can be predicted by the reference stress 



method using a single limit load value, except for the points very close 
to the plate surface. For a/t = 0.8, no single limit load value can be found 
to satisfy all the FE J solutions along the crack front. 

2. For all cases analysed, the maximum J value along the crack front may 
be predicted by using the reference stress method when the global-based 
limit load equation due to Goodall & Webster is used. 

3. The global limit load equation due to Goodall & Webster can predict the 
limit load data obtained from this work very well. The equation due to 
Sattari-Far is less accurate and unduly conservative for deep cracks. 
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Fig. 1 Geometry of plate with semi-elliptical surface crack under tension 
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        (a) a/t=0.2, a/c=0.2, n=5             (a) a/t=0.2 
 
 
 
 
 
 
 
 
          (b) a/t=0.5, a/c=1, n=10           (b) a/t=0.5 
 
 
 
 
 
 
 
 
           (c) a/t=0.8, a/c=0.6, n=5                   (c) a/t=0.8 
 
 
 
 
 
 
 
 
 
 
 
(a)From the lower bound of the scatter band                  (b) From the maximum J values 

Fig. 4 Limit loads obtained from the reference stress method 
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Fig. 2 Normalised limit loads obtained 
by the reference stress method 

Fig. 3 Variation of J/Je along 
the crack front for n=5 
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