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ABSTRACT: The author has proposed a fracture criterion for crack nucleation at stress
concentration points (notches, corner points, …). It involves both strength and toughness of
the material and is consistent with the Griffith criterion for a crack. It is employed herein to
predict failure of  joints. Stress concentration occurs at the interfaces between the joint and
the substrates at the end of the joints and it is a privileged site for crack nucleation. Butt
and scarf  joints  are studied with and without thermal residual stresses. The role of a spew
fillet in a corner is discussed.

INTRODUCTION

An important issue in the reliability of joints is the prediction of their load
bearing capacity. Failure often occurs at the ends of the joints, at corners in
lap joints, at straight edges in butt or scarf joints. They are stress
concentrations locations because of the elastic mismatch between the
components of the structure and the joint itself which is often much more
compliant.
The usual Griffith criterion is inefficient to predict crack initiation at these
points. As emphasized by the author in recent papers [1,2], the differential
form of the energy criterion must  be replaced by an incremental one. This
necessary condition for fracture must be completed by the stress criterion.
Both are necessary conditions but neither one nor the other is sufficient.
They give respectively a lower and an upper bound for admissible crack
lengths. The consistency between these two bounds provides a criterion for
crack initiation, which coincides with the Griffith one for a pre-existing
crack starting to grow. It writes in an Irwin-like form:

ckk   ≥ , (1)

where k  is the intensity factor of the most significant elastic singular term
(characterizing the stress concentration). Its critical value ck  is expressed as



an explicit function of the toughness cG , the strength cr  and the
characteristic exponent λ  of the singularity:
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It involves a scaling coefficient K , which depends on the local geometry of
the singular point and on the elastic properties of the neighbouring
components. It can be numerically determined using a contour integral [3,4].
The above formula holds for a single real singularity, but it extends to a
multiple real singularity, to multiple different real singularities and to
complex singularities as met in interface cracks for instance [2].
In a first step the criterion is used to predict failure of butt and scarf epoxy
joints in steel and aluminium specimens. Next, a scenario is proposed for
failure of spew fillets in lap joints.

BUTT JOINTS

Figure 1: The butt joint, (a) physical domain, (b) stretched domain (the
fictitious circular outer boundary is thrown at infinity).

The butt joint (figure 1) made of an epoxy resin ( GPa 5.3=E , 35.0=ν )
between two aluminium ( GPa 69=E , 33.0=ν ) or steel ( GPa 207=E ,

30.0=ν ) substrates has been widely analysed by Reedy and Guess [5,6,7]
for different joint thickness h . In a first step, the space variables ix  are
stretched : hxy ii /= , then matching conditions between far and near fields
(asymptotics in term of the thickness h  of the joint) lead to:



[ ] ...),(  )(       ),(  ),( 212121 +++== yyVthTCtehyhyUxxU hh ϕρ ,      (3)

where T  is the traction applied to the specimen. Here )( ϕρ t  describes the
far field, it is the particular solution satisfying 122=σ  (and vanishing other
components) in a homogeneous body (the substrate), hr/=ρ  and ϕ  are the
polar coordinates. The near field ),( 21 yyV  undergoes a singularity (exponent

1<λ ) at the end of the interface between the substrate and the epoxy (arrows
on figure 1 (a)):

...)(    ),( 21 ++= ϕρκ λ uCteyyV ,  (4)

where κ  is independent of the applied loads. Thus it is computed once for
all using a contour integral (the same one used to compute K  in (2)). From
these two relations, the actual intensity factor k  of the singularity reads:

κλ   1−= hTk . (5)

TABLE 1: Comparison with Reedy and Guess experiments, units for ck are not specified,
they are quite entangled and depend on λ .
λ 'λ ck  Reedy and

Guess
ck  from (2)

Steel 0.70 1.72 i ± 0.59 11.4 – 15.0 14.3
Aluminium 0.73 1.73 i ± 0.58 14.0 – 19.6 16.2

The results are summarized in table 1. The toughness cG  (more precisely
the opening mode I IcG ) and the strength in traction cr  are taken to be the
bulk properties of the epoxy: -2J.m 45=cG , MPa 45=cr . In this table, the
next (complex) exponent 'λ  of the expansion is exhibited in order to be sure
that the first one is well separated from the followings.

THERMAL RESIDUAL STRESSES IN SCARF JOINTS.

The scarf joint can be studied with the same procedure, the singular
exponent depends now on the scarf angle γ  (figure 2). But, in this section



we are more specifically interested in the role played by the thermal residual
stresses in the fracture of these joints as experimentally observed by Kian
and Akisanya [8] for different scarf angles ,0°=γ  15° and 30°.

Figure 2: The scarf joint, (a) physical domain, (b) stretched domain.

The solution of the problem splits in two parts: a mechanical and a thermal
contribution, the analogous to (3) writes:

[ ] [ ] ... ),()(    ),(  )(       ),( 212121 ++Θ+++= yyWehyyVthTCtehyhyU h ϕρϕρ ,    (6)

where Θ  is the temperature change and )( ϕρ e  the uniform expansion of
the aluminium substrate. Using the expansion (4) for both V  and W  shows
that the intensity factor k  splits also in two parts:

θkkk m+= , with mm hTk κλ  1−= and θ
λ

θ κ  1−Θ= hk . (7)

The main difference with the previous case arises from the computation of
the contour integral which holds true only for vanishing body forces and
thus cannot be used in presence of thermal residual stresses. A particular
local solution of the thermal problem homogeneous to ρ : )( ϕρ w , must be
removed from W  to compute θκ  and compare our prediction with the
results of Qian and Akisanya [8].



TABLE 2: Comparison with Qian and Akisanya experiments. Epoxy: 15 K 108.5 −−×=α ,

GPa 8.3=E , 38.0=ν , MPa 3.53=cr , 2J.m 48 −=cG , Al.: 15 K 101.2 −−×=α , GPa 70=E .

Deg, K, mm λ k  from (7) k from [8] ck from (2)
1 ,100 ,0 ==Θ= hγ 0.72 3.13 3.86 2.45
1 ,140 ,0 ==Θ= hγ 0.72 2.90 3.68 2.45

2 ,100 ,0 ==Θ= hγ 0.72 2.78 3.49 2.45
2 ,100 ,15 ==Θ= hγ 0.71 2.05 2.60 2.23
2 ,140 ,15 ==Θ= hγ 0.71 2.23 2.93 2.23

Results are almost scattered, there are many reasons for that. The first one
comes from the material data, cr  for instance can be taken from 45 to 53.3
MPa and cG  from 43 to 48 J.m-2. Moreover, as above, the critical values cr
and cG  used in (2) are the bulk properties of the epoxy, whereas (unknown)
interface characteristics are required.
The comparison for °=30γ   is not exhibited. Obviously, traction properties
can no longer be invoked alone since the shear component of the stress field
plays a growing role as the scarf angle increases. In case of pure shear
mode, an analogous analysis based on the shear strength can be carried out.
0therwise, the problems of mode mix remain.
These results can slightly be improved when considering additional terms in
the expansions (3) and (6) but of course it leads to more complicated
formulas.

FAILURE OF A SPEW FILLET

The last example is dedicated to the study of the bonding of two steel plates
( GPa 200=E , 3.0=ν ) by an epoxy adhesive ( GPa 2=E , 36.0=ν ). Its
bearing ability is tested using a three-point bend loading (figure 4).

Figure 4: The 3-point bend test.



The weak points are at the ends of the joint (arrows on figure 4) and the
stress concentration is governed by the corner singularity 545.0=λ  (the next
one 907.0'=λ  is well separated). A spew fillet is added at the end of the
joint in order to minimize locally the stress concentration effects (figure 5).

Figure 5: The spew fillet at the end of a bond and the three singular points.

Different crack nucleation scenarios can be considered as shown on figure 6
below.

 Figure 6: Four crack nucleation scenarios.

The change in potential energy prior to and after nucleation of a micro-crack
with length lδ  writes at the leading order:

λδδ 22     lKkW = ,  (8)

where λ  is the exponent of the singularity and k  is the corresponding
intensity factor. The scaling coefficient K  was already met in (2). Very few



differences are observed in the value of the scaling coefficient K , the
maximum value is achieved  in case 1 of figure 6: 510182 −×=K  but the
deviation does not exceed 2% when analysing the other cases. As a
consequence the incremental G  is almost the same for the 4 mechanisms.
Thus it is the stress state which governs the fracture.
Indeed, the spew fillet reduces the stress concentration effects but does not
remove them. Three singular points remain as highlighted by the arrows on
figure 5. The most singular is (a) ( 611.0=λ , 781.0'=λ ) while the two others
(b) are very weakly singular ( 985.0=λ ) due to the angle and to the low
stiffness of the epoxy compared to steel.
The singular eigenmodes are normalized in order to have a traction equal to
1 ( 1−× λr ) along the lower horizontal interface. Table 3 summarizes these
tractions for the two singular modes in the four cases (figure 6).

TABLE 3: Normalized tractions for the two singular eigenmodes and a combination
accounting for the intensity factors.

Case 1 2 3 4
611.0=λ 1. -0.39 -1. -0.06
781.0=λ 1. 1.09 1. 1.33

Combination 1.00 0.75 0.50 1.00

For very small r , the first singularity is predominant and the case 1 is
favoured but for larger r  the second term plays a role and the conclusion
depends on the ratio of the intensity factors of each term as shown on the
bottom line. Another method consists in observing the computed traction
along fractures of equal length, this is illustrated in the next figure which
shows that the first case is slightly predominant on the fourth one.
A fracture scenario can be derived. In a first step the horizontal interface
debonds, then a strong singularity (exponent smaller than ½) develops at the
right end of the micro-crack ( 322.0=λ , 378.0'=λ ). It triggers in a second
step the fracture of the remaining ligament of adhesive. Finally the crack
can evolve as a delamination crack along the interface or kink into the joint
but this is another problem.

CONCLUSION

New examples are proposed in this paper to validate the crack nucleation
criterion defined by (1) and (2). They are more specifically dedicated to the



failure of joints. Together with the previous studies (notch in a
homogeneous material [1], bimaterial wedge [2]) they incite to trust in the
ability of this criterion to predict failure initiation at stress concentration
points.
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Figure 7: Computed tractions acting prior to the various fracture scenarios
vs. the stretched distance y  to the corner point.
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