
 

Fracture Analyses of Circumferential Surface 
Cracked Pipes 
 
 
Y-J Kim1, J-S Kim1, Y-J Kim1 and Y-W Park2 
 
1 SAFE Research Centre, Sungkyunkwan University, Suwon, KOREA 
(E-mail) kimy@nppsafe.skku.ac.kr, (Fax) 81-31-290-5276 
2 Korean Institute of Nuclear Safety, Taejon, KOREA 
 
 
ABSTRACT: This paper provides the J estimation equations for circumferential cracked 
pipes with inner, semi-elliptical surface cracks, subject to internal pressure and global 
bending. The plastic influence functions for fully plastic J solutions are tabulated based on 
one hundred and nine 3-D FE calculations using the Ramberg-Osgood (R-O) materials, 
covering a wide range of pipe and crack geometries. The developed GE/EPRI-type fully 
plastic J estimation equations are then re-formulated using the concept of the reference 
stress approach for wider applications. The proposed reference stress based J estimation is 
then validated against detailed 3-D elastic-plastic, showing excellent agreements. An 
important aspect of the proposed estimation is that it can be used to estimate J not only at 
the deepest point of the surface crack but also at an arbitrary point along the crack front.  
 
 
INTRODUCTION 
 
Estimating ductile fracture mechanics parameters, such as the J-integral, for 
pipes with part circumferential inner surface cracks, subject to internal 
pressure and bending moment, is important in structural integrity 
assessment of defective components. In particular, one important issue for 
such part through surface crack problems is that the maximum value of 
crack driving force can occur not only at the deepest point of the crack front 
but also at an arbitrary point including at the surface point. Thus an 
engineering scheme should provide estimations of the J-integral not only at 
the deepest point for surface defects but also at an arbitrary point along the 
crack front including at the surface point. 
 This paper provides engineering J estimation methods for pipes with part 
circumferential inner surface cracks, subject to internal pressure and global 
bending. Based on extensive 3-D elastic-plastic FE analyses, relevant 
plastic influence functions for the GE/EPRI-type approach, which in turn 
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are re-formulated in terms of the tensile strain and stress, based on the 
reference stress approach. 
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Fig. 1 (a) Schematic illustration of surface cracked pipes under internal 
pressure p and under global bending M, and (b) definition of the crack angle 
φ. 
 
FE ANALYSIS AND PLASTIC INFLUENCE FUNCTIONS 
 
Detailed 3-D finite element analysis for a part circumferential inner surface 
crack in a pipe, subject to internal pressure p and global bending moment M, 
as depicted in Fig. 1, is performed using ABAQUS [1]. To cover practical 
ranges of these variables, two values of Rm/t were selected, Rm/t=5 and 20; 
four values of a/t were selected, ranging from a/t=0.1 to 0.75; and three 
values of β/π were selected, ranging from 0.1 to 0.4. The material in the FE 
analyses is assumed to follow the Ramberg-Osgood (R-O) relation: 
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where Eεo=σy where E is the Young’s modulus, taken as E=200GPa; σy 

denotes the 0.2% proof (yield) stress; and α and n are the R-O parameters.  
In the present FE analysis, α and σy are fixed to α =1 and σy=400 (MPa).  
The values of the strain hardening index, n, however, are systematically 
varied; n=1 (elastic), 3, 5 and 10. The twenty-node isoparametric quadratic 
brick elements with reduced integration (C3D20R in ABAQUS) were used 

 



 

to construct a quarter model of the pipe owing to a symmetric condition.  
The resulting finite element model consists of 1,800 elements with 8,817 
nodes, as shown in Fig. 2. The FE modes were subject to two different 
loading conditions, internal pressure and global bending moment, leading to 
a total of one hundred and ninety two calculations.  

 
Fig. 2. A typical FE mesh for Rm/t=5, a/t=0.3 and β/π=0.1. 
 

The J-integral values were extracted from the FE results using a domain 
integral, as a function of the applied internal pressure or the applied global 
bending moment.  For the R-O materials (see Eq. (1)), the fully plastic part 
of the J-integral, Jp, for pipes with part circumferential inner surface cracks 
can be expressed as [2] 
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where h1(n) denotes the plastic influence functions for Jp, Q denotes the 
generalised load and QL is the plastic limit load for Q (either plastic limit 
pressure, pL, or the plastic limit moment, ML) [3]:   
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The resulting values of h1(n) for Rm/t=20 are tabulated in Table 1 for 
internal pressure and in Table 2 for global bending. More results for h1(n) 

 



 

can be found in Refs. [4,5]. 
 
Table 1. Values of h1(n) for the J-integral, (internal pressure).  

n Rm/t a/t β /π 1 3 5 10 
0.1 4.57 11.88 33.16 478.45

0.25 4.35 10.59 27.81 346.690.1 
0.4 4.15 9.60 23.87 261.80
0.1 7.92 21.67 57.62 687.70

0.25 7.05 16.29 36.25 274.530.3 
0.4 6.07 12.01 22.60 113.87
0.1 15.20 41.95 103.55 1011.90

0.25 13.52 29.14 53.69 239.600.5 
0.4 10.34 16.99 22.92 47.47
0.1 34.85 93.03 224.03 1881.42

0.25 34.05 60.56 93.75 253.60

20 

0.75 
0.4 21.58 23.73 21.24 17.07

Table 2. Values of h1(n) for the J-integral (global bending).  
n Rm/t a/t β /π 1 3 5 10 

0.1 6.44 6.65 6.56 5.95 
0.25 6.25 6.43 5.73 5.37 0.1 
0.4 6.14 6.21 5.40 4.65 
0.1 11.51 16.69 18.34 21.08 

0.25 10.73 14.64 15.12 14.69 0.3 
0.4 9.83 12.35 11.60 9.16 
0.1 22.66 35.12 35.59 35.25 

0.25 21.43 30.36 27.54 20.30 0.5 
0.4 17.87 22.21 17.44 9.09 
0.1 53.42 68.74 73.14 77.53 

0.25 55.85 63.79 58.12 32.76 

20 

0.75 
0.4 39.03 34.95 23.29 6.12 

 
REFERENCE STRESS FORMULATION 

The elastic part of J can be expressed as 
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where h1(n=1) denotes the value of h1(n) for the elastic (n=1) material.  
Present elastic FE results provide values of elastic J, from which values of 

 



 

h1(n=1) can be found, as tabulated in Table 1 for internal pressure and in 
Table 2 for bending. Normalising Eq. (5) with respect to Eq. (2) gives  
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Variations of h1(n)/h1(n=1), determined from the present FE results, with 
the strain hardening index n can be easily obtained. Detailed results for 
h1(n)/h1(n=1) can be found in Refs. [4,5], but it would be sufficient to note 
sensitivity of h1(n)/h1(n=1) to n. For internal pressure, the values of 
h1(n)/h1(n=1)  range from 1 to ~50 for n ranging from 1 to 10, whereas for 
bending they range moderately from 0.5 to 2.  
 Introducing another normalising load Qref instead of QL, and re-phrasing 
Eq. (6) gives 
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where H1 is generally a function of geometry and n.  The underlying idea of 
the reference stress based approach is that a proper definition of Qref can 
minimise the geometry and n dependence of H1 in Eq. (7) [6].  Suppose that 
such load has been found.  This particular reference load will be referred to 
as the optimised reference load, QOR (pOR or MOR), in the present paper. 
Based on the FE results given in the previous section, the following 
expressions are proposed for QOR: 
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where the expressions for pL and ML can be found from Eqs. (3) and (4).  
 Introducing these expressions for Qref=QoR into Eq. (7) gives the values 
of H1.  It has been found that sensitivities of the h1(n)/h1(n=1) to n are 
significantly reduced in H1, by the use of the optimised reference load 
solutions [4,5].  Furthermore, the values of H1 are found to be now closer to 
unity for all cases, which leads to the following approximation: 
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Noting that this equation is valid for the R-O materials, Eq. (10) can be 
written explicitly in terms of the strain and the stress 
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In Eq. (11), σref is the reference stress and εref is the true strain at σ=σref, 
determined from the true stress-strain data. One notable point is that the use 
of Eq. (11) is not restricted to the R-O materials and is general for any 
arbitrary stress-strain relationships. 
 Equation (11) gives the estimate of the plastic J-integral, Jp, and the total 
J-integral can be estimated by adding the elastic component with plasticity 
correction [6,7]: 
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where the expression of QoR (either poR or MoR) can be found from Eq. (8) 
and Eq. (9), respectively.  
 
COMPARISONS WITH FE RESULTS 
 
FE Analyses Based on Incremental Plasticity 
To validate the proposed J estimates, further FE analysis was performed 
using incremental plasticity. Regarding material properties, actual 
experimental stress-strain data for two different materials were considered: 
SA312 Type 304 at the temperature of T=50°C and SA312 Type 316 
stainless steels at T=288°C, extracted from test data for Korean nuclear 
piping integrity program [8]. For a given material, the experimental true 
stress-plastic strain data were directly given in the FE analysis. Materials 
were modelled as isotropic elastic-plastic materials that obey the 
incremental plasticity theory, and a small geometry change option was 
invoked. 
 
Results 
Fig. 3 compares the FE J results for the Type 304 material under internal 
pressure and global bending, with the proposed reference stress based J 
estimate for various values of a/t and β/π.  Note that the proposed method 
will be denoted as the enhanced reference stress method (“ERSM”) in the 

 



 

subsequent figures. Excellent agreement between the FE results and the 
proposed J estimates can be seen for all cases considered. Note that these 
results are at the deepest point along the crack front (φ=π/2).  
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Fig. 3. Comparison of the FE J results with the proposed J estimates for the 
Type 304 material with Rm/t=20: (a) internal pressure and (b) global bending. 
Note that the J values are calculated at the deepest point (φ=π/2).  
 
 To investigate validity of the proposed J estimates to arbitrary points 
along the crack front, the FE J results at some discrete points along the 
crack front (including the surface point, φ=0) are compared with the 
proposed J estimates in Fig. 4. Note that in the proposed J estimates, the 
relevant elastic J along the crack front should be used. The J values in Fig. 4 
were normalised with respect to the crack dimension and the yield strength 
of the material as follows: 
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Again, agreement between the FE results and the proposed J estimates is 
excellent not only at arbitrary points along the crack front but also at the 
surface point. 
 
CONCLUSIONS 
This paper provides the reference stress based J estimates for pipes with part 
circumferential inner surface cracks under internal pressure and under 
global bending. Comparison with the results from detailed elastic-plastic FE 
analysis shows excellent agreement. More importantly, it has been shown 
that, despite its simplicity, the proposed estimation equation can be used to 

 



 

estimate J not only at the deepest point of the surface crack but also at an 
arbitrary point along the crack front.  Such result is significant in practical 
applications. Excellent agreement shown in this paper provides sufficient 
confidence in the accuracy of the proposed method, and thus in application 
to defect assessment of surface cracked pipes. 
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Fig. 4. Comparison of the FE J results at various points along the crack front 
(φ=0, π/6, π/3 and π/2) with the proposed method: (a) pressure, (b) bending. 
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