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ABSTRACT: At present more and more criteria of multiaxial fatigue are based on the
critical plane. The best results in the critical plane determination are obtained with use of
the damage accumulation method. In this paper this method was applied for calculations of
the critical plane position. The calculations were done for all the specimen section. The
specimens were subjected to combined tension-compression with torsion, swinging bending
with torsion. It has been shown that in different points of the section there are various local
critical planes. The global critical plane is the plane in which the life calculated according
to the chosen criterion is minimum.

INTRODUCTION

The known algorithms for estimation of fatigue life of machine elements or
structures have not been well verified in experiments. Many laboratory tests
are necessary in order to determine a range of the algorithms application
during design calculations. Some of the algorithms were verified for the
selected materials (Łagoda and Macha [1], Łagoda [6]) but we do not know
if they can be applied for other materials. It is very important to choose a
suitable criterion of multiaxial fatigue. Most of the proposed multiaxial
fatigue criteria use the critical plane. In such a case we meet problems
connected with determination of this plane.

In the algorithm of the fatigue life estimation it is very important to
determine the expected critical plane position in the point where the
maximum effort of the material occurs. The critical plane position is
strongly influenced by the stress or strain state occurring in the material.
The position is determined by the direction cosines ln, mn, nn (n = η, s) of the
unit vectors s,η occurring in the fatigue criteria, where η is perpendicular
and s is tangent to the critical plane, so there is the relation .0=⋅ sη  The
three methods of determination of the expected position of the critical
fatigue fracture plane position ([1], Macha [3, 4]) are proposed: the weight
function method, the maximum variance method and the damage



accumulation method. In the last method damages are accumulated on all
planes and the plane of the maximum damage is selected. As for the damage
accumulation method and the variance method, the success depends on
selection of a suitable criterion of fatigue effort and a stage of discretization
of angle changes.

The aim of the paper is to acquaint with the damage accumulation
method for determination of the critical plane position and fatigue life
calculations under different loading states namely proportional cyclic
tension with torsion and reversed bending with torsion. However, we should
distinguish the ideas of the critical plane and the fracture plane.

THE ALGORITHM FOR FATIGUE LIFE DETERMINATION

Fig.1 shows the algorithm for fatigue life determination under multiaxial
random loading. As a result of calculations we obtain the critical plane and
the calculation life if we assume the same criterion for determination of the
critical plane and the fatigue life.

Figure 1: Algorithm for fatigue life calculations

In the first stage histories of the stress tensor components σij(t) are
generated. In the second stage we assume the critical plane direction – it is
optional at the beginning and next it is changed at the successive iterative
steps. In the case of the damage accumulation method we start from the
third stage, i.e. from determination of history of the equivalent (uniaxial)



stress [1]. Under multiaxial loading we can use, for example, the generalized
criterion of maximum shear and normal stresses in the critical plane [3]

{ } FtKtB st
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where B, K, F – the constants for selection of the particular criterion, τηs(t),
ση(t) – time courses of the stresses connected with the plane with normal η
([1], Downing, and Socie [2], [3-6]).

Assuming that B = 0 and K = 1, we obtain the criterion of maximum
normal stress in the critical plane
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For the same histories of the stress state components σxx(t) and σxy(t), the
equivalent stress σeq(t) according to (3) depends on a position of vector η ,
i.e. on its components ln, mn, nn. In the plane stress state a position of vector
η  normal to the critical plane can be described with one angle φ in relation
to 0x axis. Thus, the direction cosines of the unit vectors are:

0,sin,cos === ηηη ϕϕ nml (3)

In the fourth stage we schematise a course of the random equivalent
stress with the rain flow method [2].

For damage accumulation (the fifth stage) we apply the selected
hypothesis. It is often the linear Palmgren-Miner hypothesis (PM):
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where ni – a number of cycles with amplitudes σai in T0, m – coefficient of
the Wöhler curve slope, N0 – a number of cycles corresponding to the
fatigue limit σaf, a – coefficient allowing to consider influence of the
amplitudes less than the fatigue limit σaf.



After determination of the damage degree S(T0) at the observation time
T0 according to (3) we calculate the fatigue life
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THE CRITICAL PLANE IN THE SPECIMEN SECTION

In the general case of the complex structures we discretize such a structure
and calculate the strain and stress tensors in particular points. For
calculations we can apply the finite element method. Next, we can
determine the critical plane in those points. Generally speaking, the fatigue
life can be different in each considered point of the analysed structure. The
life in the point of the maximum damage degree is assumed as the fatigue
life of all the structure. In this paper we consider only the round smooth
specimen. Axis of specimen is denoted as X axis and bending takes place
along Y axis. For this type of specimen searching the point of the maximum
damage is not difficult and it does not require the finite element method
because the stress gradient caused by bending and torsion is well known.
However, it is interesting to analyse distribution of the critical planes in the
specimen section under the occurring of stress gradients. Let us consider
two cases of proportional cyclic tension with torsion and reversed bending
with torsion. Under such combinations we have only the normal stress σxx

and the shear stress σxy. Thus, the criterion of maximum normal stress (2) is
reduced to the following form

( ) ( ) ( )tmltlt xyxxeq σσσ ηηη 22 += (6)

Under proportional cyclic loading for amplitudes we have

xyaxxaeqa mll σσσ ηηη 22 += (7)

Substituting Eqs. (3) to (7) we obtain

( ) ( ) xyaxxaeqa σσσ ϕϕϕ cossin2cos2 += (8)



After differentiation and equation to zero of Eq.(8) and taking into account
changes of the torsional stresses in the specimen section we obtain the
analytical condition for the critical plane position determined by the angle φ
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where: k = σxya / σxxa - ratio of the shear stress amplitudes to the normal
ones, R - specimen radius, y, z - coordinates in the specimen section.
The critical plane position varies along the radius according to

R
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where the actual distance from the centre is 22 zy +=ρ .
Assuming that k = 1, this angle varies from 31.7o on the surface to 0o inside
the specimen. The critical plane in the section of a round specimen
subjected to proportional tension with torsion is shown in Fig.2.

Figure 2: The critical plane positions in the section of a round specimen
subjected to proportional cyclic tension with torsion

Let us consider a combination of proportional bending with torsion. The
analytical condition for the critical plane position determined by the angle φ
is similar to Eq.(10)
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The critical plane positions for such a case are shown in Fig. 3. From
Fig.2 it appears that under tension with torsion in the same distance from the



specimen axis we can observe the same equivalent amplitude σeqa and the
same calculated critical plane. Under combined bending with torsion (Fig.3)
we observe only torsion in the bending plane and the critical plane is
inclined at 45o; in the fibre which is the most distant from the bending plane
the critical plane is inclined at 31.7o as under the combined tension with
torsion. The same critical plane directions are located radially from the
specimen centre. If the critical plane is identified with the fracture plane, we
should obtain outlines of cracks in the round specimens, see Fig.4. From the
experiments it results that the fracture plane i.e. the experimental crack
outline does not take forms shown in Fig.4. It means that the fracture plane
should not be identified with the critical plane. The critical plane should be
understood as the theoretical plane occurring in a fatigue criterion, allowing
to determine the minimum life of the element or structure or the crack
initiation plane.

Figure 3: The critical planes in the section of a round specimen subjected to
proportional cyclic bending with torsion

(a) (b)

Figure 4: Theoretical crack outline in a round specimen with a map of
normalized stresses amplitudes σeqa/σeqa(max) subjected to proportional
cyclic: (a) tension with torsion, (b) bending with torsion



A SIMULATION EXAMPLE OF THE CRITICAL PLANE
DETERMINATION

Computer simulation was done for the full spatial stress state by generation
of 6 stress state components σij(t) for i, j = x, y, z. All the generated stress
histories were pseudorandom and had the same variances, probability
distributions and power spectral density distributions. The stress tensor
components were independently generated and their intercorrelation
coefficients were close to zero. The extreme frequency had a normal
distribution from the interval 3-6 Hz and the extreme distributions were of
the Rayleigh type. The fatigue life calculations were done for 10HNAP steel
[6]. The exponent of the Wöhler curve under uniaxial loading was m = 9.82,
the fatigue limit σaf = 252 MPa, and the corresponding theoretical number of
cycles was N0 = 1.28 106 cycles. For calculations the criterion of maximum
normal stress (2) was used and damages were accumulated according to the
PM (4). Fig. 5 shows the sphere located in the spatial coordinate system.
The suitable axes are the direction cosines lη, mη, nη determining the critical
plane position. The calculated fatigue life, i.e. the material damage degree is
grey in the picture. For such generation and the fatigue life calculations the
following minimum lives were obtained for the direction cosines lη = 0.631,
mη =0.695, nη = -0.342, i.e. for the corresponding angles 129o, 46o and 110o.
The same calculation lives were obtained for the angles turned about 180o at
the opposite side of the presented sphere Fig. 5.

Figure 5: The calculated fatigue lives versus directional cosines (lη, mη, nη)



CONCLUSIONS

1. Simulation tests of the critical plane positions under the stress gradients
show that there are different planes in particular points of the section,
assuming the criterion of maximum normal stress in the critical plane.

1.1 Under combined proportional tension with torsion the critical planes
change along the radius and at the perimeter they are the same.

1.2 Under combined proportional bending with torsion the critical planes
change radially in relation to the centre. In the bending plane it is 45o

and this angle decreases in the fibre which is maximally distant from
the bending plane where combined bending with torsion is dominating.

2. Simulation of the spatial stress state shows that there are different
calculated fatigue lives dependent on the assumed direction cosines. As
a result of such simulation we obtain two sets of three angles, different
at 180o.

REFERENCES

1. Łagoda, T., and Macha, E., Multiaxial Random Fatigue of Components
and Structures, (in polish), Z 76, WSI Opole, Poland, 1995.

2. Downing, S.D., Socie, D.F., Int. J. Fatigue, Vol. 5, 1982, pp.31–44
3. Macha, E., Mathematical Models of Fatigue Life Under Multiaxial

Random Stress State, (in polish), series: Monographs no. 13, Wroclaw,
Poland, 1979.

4. Macha, E., Mat. -wiss. U. Werkstofftech. No. 20, 1989, Teil I, Heft
4/89, pp.132–136, Teil II, Heft 5/89, pp.153–163.

5. Macha E., Simulation of Systems, L. Dekker Ed., North - Holland
Publishing Company, 1976, pp.1033–1041.

6. Łagoda, T., Energetic Models of Fatigue Life for Construction
Materials Subjected to Uniaxial and Multiaxial Random Loading, (in
polish), Z.121 Studies and Monographs, Technical University of Opole,
Poland, 2001.

The paper realized within the research project 7 T07B 018 18, partly
financed by the Polish State Research Committee in 2000–2002 and the
research project financed by NATO Advanced Fellowships Programme
1|J|2000.


