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ABSTRACT: In this contribution, the homogenized model with microlocal parameters of 
two-layered periodic elastic space is applied to analyse the three-dimensional problems of 
thermal stresses near interface cracks. Within the framework of this model, the method of 
solving value-boundary problems resulting from thermal means and the general 
formulation for an arbitrary interface crack in terms of integro-differential singular 
equations are outlined.  
 
 
INTRODUCTION 
 
Increasing use of composite layered materials in situations involving both 
mechanical and thermal environments requires the study of different aspects 
of their failure behaviour. In particular, the interface fracture is a common 
encountered case (see, for example, the recent proceedings edited by 
Rossmanith [1]). 

This paper is considered with the stationary thermoelastic problem of 
bimaterial periodically space weakened by an arbitrary plane crack with a 
smooth profile lying on one of the straight interfaces of layers. It is a sequel 
of our earlier investigations [2,3] in the two-dimensional case. To get the 
result an approximate method will be employed. The layered space is 
replaced with a homogenized model of the linear thermoelasticity with 
microlocal parameters, which was devised by Woźniak [4] and found wide 
application (see a survey paper [5]). Within this model the harmonic 
potentials are constructed from the thermal boundary conditions on the 
crack plane by solving the ordinary boundary-value problems related to a 
half-space analogously in isothermal situations (see a potential function 
method described by Kaczyński [6]). Further, the general problem is 



formulated in terms of integro-differential singular equations of Newton’s 
potential type.  

Problems close to that considered here will be found, for example, in [7-
8] for a homogeneous infinite medium as well as in [9] for bonded 
dissimilar materials. 
 
 
PROBLEM FORMULATION AND BASIC EQUATIONS 
 
 

Interface crack ( )S

 
 

Figure 1: Two-layered periodic space with an interface crack 
 

Consider a microperiodic-laminated space as shown in Figure 1. A repeated 
thin fundamental layer of thickness δ  is composed of two homogeneous 
sublayers, denoted by 1 and 2, with thicknesses 1δ  and 2δ ( )1 2δ δ δ= + , and 
with different thermo-mechanical properties. Let ,l lλ µ  be the Lamé 
constants, lk  the thermal conductivity, ( )2

3l l lβ λ µ+  the coefficients of the 
volume expansion; here and in the sequel, all quantities (material constants, 
stresses, etc.) pertaining to these sublayers will be designated by the index l 
or ( )l  taking the values of 1 and 2, respectively. A Cartesian coordinate 



system ( )1 2 3, ,x x x  is introduced with the 3x -axis directed normal to the 
layering and the 1 2x x -plane being one of the interfaces of the materials.  

We deal with the spatial thermoelastic problems involving this stratified 
medium weakened by an interface arbitrary crack and conducting heat under 
steady-state conditions. The perfect mechanical bonding and ideal thermal 
contact between the layers (excluding the region occupied by the crack) is 
assumed. Moreover, the crack surfaces are required to be free of tractions 
and certain thermal conditions on the crack faces (temperature-free crack or 
insulated crack) are taking into account. The closed solutions of the 
considered problems cannot be obtained because of a complicated geometry 
of the body and complex boundary conditions. Therefore, the homogenized 
model of this layered composite is applied to seek an approximate solution. 
Without going into details we present only the final basic equations of the 
homogenized model of the treated body (see [6] for a thorough derivation)1: 
– the equation of heat conduction for a macro-temperature ϑ  (in the 
absence of heat sources) 
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– the macro-displacement  iw  equations (in the absence of the body forces) 
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– the constitutive relations for the fluxes ( )l

iq  and the stresses ( )l
i jσ   

 

                                                           
1  Indices ,i j  run over 1, 2, 3 and are related to the Cartesian coordinates whereas indices 

,α γ  run over 1, 2.  Summation convention holds unless otherwise stated. Subscripts 
preceded by a comma indicate partial differentiation with respect to the corresponding 
coordinates.  
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Positive coefficients appearing in the above equations, describing the 
material and geometric properties of the composite constituents, are given in 
the Appendix. Let us observe that the condition of perfect thermal and 
mechanical contact between the layers is satisfied. Assuming that two 
sublayers have the same thermo-mechanical properties we pass directly to 
the well-known equations of classical theory of uncoupled stationary 
thermoelasticity for a homogeneous isotropic space, given in [10].  
 
BOUNDARY-VALUE PROBLEM AND METHOD OF SOLUTION 
 
We are interested in determining the steady-state thermal stresses and 
deformations in a two-layered space weakened by a crack occupying the 
region S (of an arbitrary shape with a smooth boundary) in the 1 2x x - plane 
(see Figure 1). Within the framework of the above-homogenized model we 
consider the boundary-value problem: find fields ϑ  and iw  suitable smooth 
on 3R S−  such that (1) and (2) hold and satisfy the prescribed thermal and 
mechanical boundary conditions on the crack surfaces resulting from a 
given external loading. Without loss of generality, it is assumed that the 
crack faces are taking to be free from mechanical tractions. According to the 
results given in [6], the method of solving consists of seeking the 
temperature potential ω  related to the solution of (1) (with the prescribed 
thermal conditions) as follows  
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and of representing the macro-displacements by three harmonic potentials 
denoted by ( ) { }2

1 2 3, , , , 0, 1, 2,3i i i i ix x z z t x iφ φ= ∇ = ∀ ∈  in the form 
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This general representation is given under the assumption that 1 2µ µ≠  and 

0t kα ≠  (the other cases are detailed in [6] and the constants , ,it c mα α  
appearing here are given also in [6]).  
 The classical procedure for obtaining the solution is used. The macro-
temperature ϑ  or the thermal potential ω  is first found to determine the 
induced thermal stresses by using (5) and (6). Making use of the appropriate 
boundary conditions on the crack surface S and the principle of 
superposition, the problem under study may be reduced to some mixed 
boundary-value problem related to a half-space 3 0x ≥ . It is convenient to 
resolve the general problem into symmetric part A associated with the 
prescribed temperature 0T (or temperature gradient 0q ) and skew-symmetric 
part B arising from the insulation of the crack as follows: 
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 Invoking a direct analogy between the thermal crack problems in hand 
and their mechanical counterparts, exploited in [6], both cases are reduced 
to classical mixed problems of potential theory. Thus, the conditions (6) and 
(7) involve the reduction of the thermoelastic crack problems to that of 
finding one harmonic potential f in case A and two harmonic potential g, h 
in case B in a half-space 3 0x ≥  as follows (the constants ˆˆ, ,aα ν β  are 
defined in the cited paper [6]): 
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 The above problems can be formulated by the integro-differential 
equations by using the representations of unknown functions , 3 , 3 , 3, ,f g h  
through the potentials of the simple layer and making use of the well-known 
their harmonic properties. Similarly to the derivation, given by Fabrikant 
[11], it is obtained the governing equations corresponding to opening mode 
of crack extension in case A and to the sliding and tearing modes in case B: 
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Here the following differential operators were used:  
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 and the unknowns functions are denoted by 

( ) ( )1 2 1 2, , ,0i ix x w x xω += . 
 Some closed-form solutions of the above integral-differential equations 
for a specific thermal and mechanical loading are known if the crack S has a  
circular shape. They lead to the typical non-oscillating inverse square-root 
stress singularities on the contrary to the classical solutions of interface 
crack problems (see, for example, [9]). Thus the intensification of local 
thermal stresses in the neighbourhood of the crack border may be measured 
by the stress intensity factors (SIF) governing the onset of crack propagation 
in linear fracture mechanics (see the expressions for SIF in [6]). In general, 
the results may be obtained by using numerical methods. 
 
  



APPENDIX 
 
Denoting by ( )2 1, 2l l lB lλ µ= + = , 1η δ δ= , ( ) 1 21B B Bη η= − + , ( ) 1 21K k kη η= − + ,  
the positive coefficients in Eqs (1-3) are given by the following formulae: 
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