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ABSTRACT: In the oil and gas industry, one way of laying pipes on the seafloor is by the
reeling process. In this process the pipe is subjected to a cyclic plastic deformation. Due to
this plastic deformation the mechanical properties of the material are changed. In this
study the finite element method is used to predict the influence of the cyclic plastic
deformations on the mechanical behaviour of the material. The fraction model is used to
describe the cyclic stress-strain behaviour. In order to be able to predict fracture of the
material the Gurson-Tvergaard-Needleman damage model is used in conjunction with the
fraction model. By comparing unit cell calculations with the damage model, the parameters
q1 and q2 were determined for both the monotonic and cyclic loading conditions.

INTRODUCTION

For the investigation into the cyclic plastic deformation of steel, the reeling
of steel pipelines was chosen as a test case. In the oil and gas industry the
reeling and unreeling of pipelines is one of the ways to install pipelines on
the seafloor. The reeling process involves four distinct stages: reeling,
unreeling, alignment and straightening. These four stages and the
corresponding deformations are shown schematically in Figure 1.
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Figure 1: The reeling process and the corresponding deformations.



To investigate the influence of cyclic plastic deformation on the stress –
strain curve and the fracture behaviour of the material, tests performed on
laboratory specimens were compared with finite element simulations. For
the simulations the Gurson-Tvergaard-Needleman damage model [1] was
combined with a model for cyclic plasticity in order to be able to predict the
damage evolution under cyclic loading.
The material for the experiments was taken from a Grade X80 steel pipe
with 0.13% C.

GTN DAMAGE MODEL

One way for metals to fail is by formation, growth and coalescence of voids.
The Gurson-Tvergaard-Needleman (GTN) damage model [1] is a way to
implement the void nucleation, growth and coalescence in a finite element
model. The amount of damage is given by the volume fraction of the voids
in the matrix material, f. For the increase in the void volume fraction, two
contributions were identified [1]:
• growth of existing voids (Eq. 1),
• nucleation of new voids (Eq. 2).
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where p
kkε  is the inelastic volumetric strain rate, fN is the volume fraction of

void nucleating particles, p
mε  is the equivalent plastic strain of the matrix

material, εn is the average strain needed for nucleation and S is the standard
deviation of the strain needed for nucleation.
When these equations are used for cyclic loading, they are subjected to both
tensile and compressive loading directions. Under compressive loading, p

kkε
will be negative and therefore the growth rate of the void volume fraction
will also be negative. This means that the void volume fraction will decrease
and the voids will (partially) close due to the compressive loading.
For the nucleation of new voids the situation is different. The p

mε  will
always be non-negative and therefore the voids will nucleate during both
tensile and compressive loading according to Eq. 2. It is, however, not very



likely for new voids to nucleate while existing voids are closing. Therefore a
modified void nucleation rate is proposed to allow nucleation only during
tensile loading:
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The yield function, F, as described by Gurson and modified by Tvergaard
and Needleman, can be seen in Eq. 5.
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where σe is the macroscopic equivalent stress, σΜ is the yield strength of the
matrix material, σkk is the volumetric stress and q1 and q2 are parameters
introduced by Tvergaard [2].
In order to take void coalescence into account, Tvergaard and Needleman
[1] introduced a modified void volume fraction, f*, that is given in Eq. 6.
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where fc is the void volume fraction when voids start to influence each
other, fF is the void volume fraction at coalescence of the voids.

FRACTION MODEL

In order to predict the fracture behaviour of the material after several cycles
of plasticity, the GTN damage model needs to be applied to a cyclic
plasticity model. As has been shown previously [3], the isotropic and
kinematic hardening models do not predict the cyclic stress – strain curve
very well. In order to obtain a better description the fraction model is used.



In the fraction model the material is thought to consist of different fractions.
Each of the fractions with its own weight and mechanical properties. By
parallel loading of the fractions, the resulting material behaviour will be a
weighted average of the behaviour of the fractions. A schematic view of the
fractions within one element of the finite element calculations can be seen in
figure 2.
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Figure 2: Schematic representation of the fractions within one element.

The parameters for the fraction model are determined using experimental
true stress – strain curves and low cycle fatigue stress – strain curves. In this
study 5 fractions are used to describe both the monotonic and cyclic
behaviour of the material. The first 4 fractions exhibiting linear
workhardening, while the 5th fraction used power law workhardening to
obtain a good fit with the experimental true stress – strain curve for strains
up to fracture.
As the fraction model is used to describe the macroscopic stress – strain
curve of the material, the GTN damage model will be applied to the results
of the fraction model. This combined GTN damage and fraction model is
implemented into the finite element package MSC.Marc [4] through a user
subroutine.

THE FINITE ELEMENT CALCULATIONS

In order to calibrate the parameters of the GTN damage model, unit cell
calculations were performed. In unit cell calculations, the material is
considered to consist of a periodic arrangement of hexagonal representative
volumes, called unit cells, each containing one void. For simplicity the
hexagonal prisms are approximated by cylinders, see Figure 3. As the
cylinders are axisymmetric, only a 2D plane needs to be modelled.
By calculating the mechanical behaviour of a unit cell containing a void, the
macroscopic mechanical behaviour is determined and this is used to
calibrate the parameters of the GTN damage model. Different levels of



constraint were imposed on the unit cell by changing the parameter ρ, which
is the ratio of the applied radial stress, σrr, to the applied the axial stress, σzz.
The results from the unit cell calculations were compared to one-element
calculations using the combined GTN damage and fraction model. From this
comparison the parameters q1 and q2 for the GTN damage model were
obtained.
In order to investigate the influence of cyclic loading on a material
containing voids, the unit cell was also subjected to cyclic deformations.

σrr

σzz

Figure 3: Micromechanical modelling of a material containing voids.

RESULTS

Unit cell calculations
The evolution of the void volume fraction for monotonic loading of the unit
cell can be seen in figure 4. The point where localisation of the deformation
takes place is also indicated in this figure.
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Figure 4: Void volume fraction for monotonic loading.



The evolution of the void volume fraction for cyclic loading of the unit cell
can be seen in figure 5. A decrease in void volume fraction can clearly be
seen for the compressive loading stages. On the other hand there is a gradual
increase in the void volume fraction with an increasing number of cycles for
all tested triaxialities.
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Figure 5: Evolution of the void volume fraction during cyclic loading for
different triaxialities.

Combined GTN damage and fraction model
In figure 6 the results of the combined GTN damage and fraction model are
compared with the unit cell calculations for monotonic loading. For these
calculations two sets of q values were used: q1 = 1.5, q2 = 1.0 and q1 = 1.0,
q2 = 1.0. It is clear from this figure that the q values should chosen between
these two values.
The results shown in figure 7 are obtained for the cyclic loading of the
combined GTN damage and fraction model. In order to get a good fit for the
first cycle for the different triaxialities, the parameters q1 and q2 had to be
set to 3.2 and 0.78 respectively.
The q values that seem to work well for large equivalent strains, as seen in
the monotonic case, are not applicable to describe the void volume fraction
well for small strains, as seen in the cyclic case.
The gradual increase in void volume fraction seen for cyclic loading of the
unit cell is not observed in the results of the combined GTN damage and
fraction model. An explanation for this may be the large strains that occur in



the unit cell close to the void. These high strains may cause cyclic hardening
that is not seen for small strains. As a consequence the voids will not close
as easily as they were opened.
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Figure 6: Comparison of the GTN damage and fraction model with the unit
cell for monotonic loading.
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Figure 7: Comparison of the combined GTN damage and fraction model
with the unit cell calculations for cyclic loading.



CONCLUSIONS

In order to be able to use the GTN damage model for cyclic plasticity, a
cyclic plasticity model needs to be used with the GTN damage model. Also
the nucleation law needs to be changed in order to prevent nucleation of
voids under compressive loading.
In order to describe the results of the unit cell calculations with the
combined GTN damage and fraction model, two sets of values for q1 and q2
are needed. The set needed to describe the cyclic behaviour at small strains
was found to be q1 = 3.2, q2 = 0.78 while the set that can describe the larger
strains of the monotonic loading was found to be between q1 = 1.0, q2 = 1.0
and q1 = 1.5, q2 = 1.0.
From the unit cell calculations performed with cyclic loading, a gradual
increase in the void volume fraction with the number of cycles was
observed. This  was not present in the results of the combined GTN damage
and fraction model.
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