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ABSTRACT: The problem of the SIF determination of internal cracks under contact
loading is dealt with. An approach based on the weight function method was developed for
the determination of KI and KII . The effect of the contact and of friction between the crack
faces was taken into consideration by using approximate relations. The results were
compared with the ones obtained by finite element analyses and the agreement was found
satisfactory, both without and with the contact between the crack faces.
As possible application of the approach, the case of contact fatigue crack propagation in a
automotive gear was dealt with.

INTRODUCTION

Contact analysis is becoming more and more important in the design of
many mechanical systems like gears and bearing.

One of the most important criteria for dimensioning these elements is the
contact fatigue damage, which consists in the removal of surface material
due to the stable advance of a microcrack till the surface of the element. It is
caused by the cyclic repetition of the contact stresses and its origin can be
either on the surface or under it, generally in correspondence of a hard
inclusion.

If the attention is focussed on the sub-surface cracks all the references
recognise that the crack propagation is governed by the cyclic variation of
the stress intensity factor concerning the mode II (sliding). This calculation
is, nevertheless, complex. In fact, due to the nature of the applied load, the
crack faces are in contact and no analytical solution is available taking into
account the friction between the crack faces. Kaneta et al. [1] proposed a
three-dimensional approach enabling the calculation of the SIF for sub-
surface circular cracks, but a limited number of cases were published.

 More recently some approaches [2, 3] based on Finite Element method
able to calculate the stress intensity factors and to predict the direction and



the rate of the crack growth were presented. However, all these FE
approaches are expensive and time-consuming.

As a consequence of this, particular efforts have been recently dedicated
to the research of alternative, no time-consuming numerical methods, able
to give accurate solutions of practical cases in a reasonable time. Among
these ones the Weight Function (WF) method  is becoming more and more
popular because of its versatility and low time needed for its application

In this paper it is described an approach to determine the weight
functions of an internal crack under mode I and II loading. The WF is based
on the results obtained in [4], relating a symmetric load condition, but it is
applied to non-symmetric load cases.  The friction between the crack faces
was also considered in an approximate way: the comparison with FE results
allowed judging the accuracy of the results. One example of an application
to contact fatigue design practice is provided, namely the analysis of crack
propagation in treated gears.

THE WEIGHT FUNCTION METHOD

The weight function method was introduced by Bueckner [5, 6], that
showed how to determine the SIF of a cracked body by integrating over the
crack length, a, the product of the Weight Function, m(a,x), for the stress
pattern of the non cracked body, σ(x):
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The major advantage of the weight function method is that the weight
function m(a,x) is a function of the geometry of the cracked body; so, once
it is known the SIF of a cracked body can be determined by knowing the
stress distribution of the uncracked body over the crack length.

For the calculation of the WF, it can be demonstrated the validity of the
following formula:
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where: E'=E for plane stress state; 
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vr(x,a) and KI
r  are respectively the COD and the mode I SIF due to a

reference load system  as a function of the crack length a.
 In order to determine the Weight Function it is, therefore, necessary to

know the K(a) and v(a,x) at least for a single reference case [7, 8].



In particular for the case considered in this paper (internal crack in a half-
plane, parallel to the external surface and subjected to a rolling contact
loading) it is possible to define two reference loading systems. The first for
the Weight Function relating to the mode I is a uniform pressure, po, on the
crack faces, as it is shown in Figure 1a, the second for the Weight Function
relating to the mode II is a tangential stress uniform, τo, on the crack faces,
as it is shown in Figure 1b.

a b
Figure 1: Reference loading system: a) Weight Function related to the

mode I; b) Weight Function related to the mode II.

The problem is, therefore, the determination of the SIF of a crack internal
in an elastic half-plane parallel to the external surface and loaded by a
uniform pressure and by a uniform shear stress.

 The case was solved by referring to the numerical analysis proposed by
Erdogan and Arin [4], that is based on the solution of a system of integral
equations of Fredholm. This solution is related to a general case of an
inclined crack in a domain and has been reduced to the case of a crack
parallel to the external surface.

 The equations obtained by the application of the method of Erdogan are
reduced to an algebraic equation system, by extending in series by
Chebyshev polynomial both the equation terms. Further details will be
found in [9].

In Figures 2a and 2b the patterns of the reference non-dimensional Kr
I

and Kr
II   for the cases of Figure 1 are reported. Indeed if po is applied also a

KII  is present, but in the case analysed the values are negligible and are not
reported. It is possible to note that if d/a→0 the K→∞  and therefore the
values meaning less. Therefore, it is important to define some validity
limits, in particular if d/a≤0.4 the corresponding values of SIFs are not
considered reliable.

 In order to determine the Weight Function it is, now, necessary to
calculate the reference displacement functions. In  [10] the  displacement



components ur and vr, respectively in direction x and y, are reported. In
particular, for the case of a crack loaded by a uniform pressure po the
expressions are:
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and for the case of a crack loaded by uniform tangential stress τo are:
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Figure 2: Non dimensional reference SIFs for the cases of internal crack:

a) under uniform pressure po; b) under uniform tangential stress τo.

It is possible, now, to evaluate the Weight Function for the case related to
Figure 1a:
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Where r
po

v )( and rK1  are defined respectively in Eq.4 and in Figure 2.
By replacing and deriving it follows:
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In order to obtain the Weight Function related to case of Figure 1b the same
proceeding is followed:
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 Where ),()( xau r
oτ  and ),( xaK r

II  are defined respectively in Eq.5 and
Figure 2. By substituting and deriving it follows:
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CALCULATION OF SIF UNDER ROLLING CONTACT LOADS

Once the WF is known, it is possible to calculate the SIF for an internal
crack under rolling contact loads, by using (1). In particular in this paper the
SIF concerning the mode II is dealt with. The stress distribution considered
for the calculation of KII is the one calculated by Smith and Liu [11] in
uncracked elastic half-space, loaded by hertzian pressure distribution.

To determine the KII values during an entire load cycle, the analysis was
executed by varying the distance between the centre of the pressure
distribution and the centre of the crack (distance e in Figure 3). In the case
of e≠0, however, the WF found from the above load case is no more valid,
since the problem lost the symmetry and mode II and I are now coupled.

However it was hypotized that for cracks of small dimensions and little
values of e the solution found can be applied with an acceptable
approximation from a practical point of view. The problem is that by using
the solution it is not possible to distinguish between the crack tips, since the
result is the same. To overcome this difficulty the values of the stress
intensity factors for the two crack tips were calculated from the one
obtained from the WF by weighting the stress distribution on the crack
length. In other words, if KII is the value obtained by the integration of the
Weight Function, xG is distance of the stress distribution barycentre from the
centreline of the crack, it is defined a factor p:
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the SIF values in the tips A and B  are, respectively:
IIIIA pKK =                IIIIB KpK )1( −=                   (11)

The values obtained by using this approach were verified with the results
of finite element analyses, details are included in [9]. The crack length
considered is a=0.07mm, the crack distance is d=0.14mm and the value of
the maximum pressure is po= 1400 MPa. The complete rolling was
simulated and the results from the two different approaches are shown in
Figure 4.



The difference of the results by the two methods is lower than the 10%.
The comparisons were conducted even for different crack lengths and the

results are shown in Table 1 in terms of variation of SIF in a complete
loading cycle, ∆KII, as it is defined in Figure 4.

It is evident that the error increases with the crack dimension. This is
probably due to the hypothesis considered to determine the m2 that are less
and less respected if the crack length grows.
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Figure 3: Scheme of the internal
crack under rolling contact loading.

Figure 4: Simulation of a complete
rolling: a=0.07mm, d=0.14mm, f=0,
po=1400 MPa;------FE; __________ WF.

Besides m2 was evaluated without considering the combined effect of
both the crack propagation modes, that when the cracks become larger can
be important.

TABLE 1Comparison of the ∆KII results obtained by  WF and FE analysis,
d=0.14mm, po=1400 MPa, f=0,0.4

 Crack length
a [mm]

∆KII [ mMPa ]
 WF

∆KII   [ mMPa ]
FE

f=0 f=0.4 f=0 f=0.4
0.03 5.9 3.3 6.0 3.5
0.04 6.5 - 6.5 -
0.05 7.2 3.8 7.2 3.9
0.07 9.7 4.6 9.5 4.5
0.09 9.1 4.9 9.5 4.8
0.12 10.5 - 10.7 -
0.15 11.6 - 11.1 -
0.18 12.5 - 11.9 -
0.22 11.4 - 12.1 -
0.27 5.5 - 13.1 -
0.35 8.1 - 13.8 .

 ∆ ∆ ∆ ∆KII



EFFECT OF THE FRICTION BETWEEN THE CRACK FACES

In view of a possible application to cases of practical interest, it is necessary
to consider in the calculation the effect of the contact between the crack
faces and of the consequent friction forces.

In this paper an approximate approach, based on the one described in
[12], is applied.This latter assumes the same m2 function but a modified
stress distribution, τeff, used to calculate KII.

In the Table 1 the comparison between the values of the variation of SIF
in a complete loading cycle, ∆KII, calculated by means of the Weight
Function and the Finite Element model, by considering the friction effect, is
shown.

The comparison is satisfactory and it is possible to consider available the
method adopted to consider the effect of the friction coefficient.

APPLICATION TO CONTACT FATIGUE CRACK PROPAGATION

As application of the present approach a case of practical interest is
considered: the contact fatigue crack propagation of an internal crack in an
automotive spur gear tooth (module 3 mm, maximum Hertz contact pressure
po=1400 MPa, material: carburized steel). The problem is nowadays of
great interest, because recent researches show that the most of the life span
of contact elements is spent during the crack propagation phase [13].

It is possible to find different laws in literature: the one considered in this
paper is the law proposed by Glodez et al. [13].

 The initial dimension of the crack, 2a=0.05 mm, that corresponds to the
typical grain size, was assumed. The depth of the crack considered is
d=0.14 mm, which corresponds to the depth at which there is the maximum
hertzian shear stress.

The value of ∆Κ ΙΙ  was calculated by using the WF approach, taking into
consideration the contact between the crack faces and assuming f=0.4. On
the basis of the results of the analyses the following interpolation function
was obtained:

55.296.3325.123153 23 ++−=∆ aaaK II    [ mMPa ] (15)

The calculation was stopped for a=0.35mm. In fact, for larger cracks it
was shown that the numerical results are not reliable.
In Figure 5 it is shown the crack grow rate: the strong discontinuities are
due to the deceleration of the crack near a grain boundary. The crack length
trend versus the number of cycles is shown in Figure 6.
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Fig.5: Crack growth rate. Fig.6: Crack length trend versus
number of cycles.

CONCLUSIONS

 A WF approach to calculate the SIF of an internal crack under rolling
contact loading was presented. It is based on the solution found by Erdogan
and allows taking into account the friction of the crack faces. It was applied
to determine the SIF variation during an entire load cycle: since the load
case is not symmetric when the  pressure distribution is eccentric with
respect to the crack tip, the range of validity of the approach was discussed.

On the basis of the results it is possible to affirm that the approach is
accurate when the crack dimensions are limited. Since this is the
dimensional range in which mechanical components spend most of their
lifetime, the approach can be a useful tool to predict their duration.
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