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ABSTRACT: A multiaxial fatigue criterion for metals subjected to random loading is 
presented. Accordingly, the orientation of the critical plane, where fatigue life estimation is 
carried out, is determined from the weighted mean position of the principal stress 
directions; a nonlinear combination of stress components acting on the critical plane is 
used to define an equivalent normal stress. A specific cyclic counting method and a general 
damage model are employed to process such an equivalent stress and to determine fatigue 
endurance. Finally, an application of the criterion to some relevant random fatigue tests 
(proportional bending and torsion) is presented. 
 
 

I N T R O D U C T I O N  
 

Many multiaxial high-cycle fatigue criteria related to constant amplitude 
loading  are aimed at reducing a given multiaxial stress state to an 
equivalently effective uniaxial stress condition (see, for instance, Ref. 1 for a 
critical assessment of these criteria). Criteria for variable amplitude loading 
(e.g. random loading) are usually proposed as a generalisation of their 
counterparts for constant amplitude loading, by introducing a cycle counting 
method (e.g. rainflow method) and a damage model (e.g. the Miner rule). 
Some criteria present specific cycle counting methods to resolve multiaxial 
loading histories into individual cycles (e.g. see Refs 2,3). 

A multixial high-cycle fatigue criterion has recently been proposed by the 
first two authors [4] for constant amplitude loading. Such a criterion, based 
on the critical plane approach, considers (for fatigue failure assessment) an 
equivalent stress based on a nonlinear combination of the maximum normal 
stress and the amplitude of shear stress, acting on the critical plane. In a 
recent paper [5], the authors have attempted to extend the original criterion 
of Ref. 4 to random loading, by cycle counting the equivalent stress and 
employing a damage model. 

In the present paper, the equivalent stress is cycle counted in a different 
manner with respect to that of Ref. 5, in order to account for the time-



varying direction of the shear stress acting on the critical plane. Finally, such 
a proposal is discussed by considering experimental data related to 
combined bending and torsion random loading [6]. 
 
 
O R I E N T A T I O N  O F  T H E  C R I T I C A L  P L A N E  
 

Let σσ(t) be the stress tensor at point P of a body subjected to a given fatigue 
loading. At each time instant, the principal stresses, 321 ,, σσσ  

( 321 σσσ ≥≥ ), and the principal stress directions can be calculated. The 

instantaneous orientation of the orthogonal coordinate system P123  is 
determined by using the principal Euler angles )(),( tt θφ  and )(tψ  [7-9]. 

Then, the mean directions 3̂ and 2̂,1̂  of the principal stress axes can be 
obtained from averaging the instantaneous values of the principal Euler 
angles. The averaging procedure is carried out by employing a weight 
function which accounts for the effect of the maximum principal stress. 
Such a function depends on two parameters deduced from the S-N curve for 
uniaxial tension-compression : the normal stress fatigue limit, afσ , and the 

coefficient ,1 mm −=σ  where m  is the negative slope of the S-N curve 

considered. 
A correlation between the weighted mean direction 1̂  of the maximum 

principal stress and the normal w to the critical plane has been proposed in 
Ref. 4: 
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where δ  is the angle, expressed in degrees, between 1̂  and w (Fig. 1a), and 
τaf is the shear stress fatigue limit for fully reversed torsion. 
 
 
D E F I N I T I O N  O F  A N  E Q U I V A L E N T  S T R E S S  
 

Consider the critical plane ∆, passing through point P, and the related 
orthogonal coordinate system Puvw (Fig. 1b). The direction cosines of u-, v- 
and w-axis, with respect to the PXYZ frame, can be computed as a function 
of the two angles ϕ  and ϑ  [4]. The stress vector S  w acting at point P of the 
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Figure 1: (a) Correlation between weighted mean principal stress directions 
( 3̂ and 2̂,1̂ ) and normal w to the critical plane; (b) Puvw  and PXYZ  

coordinate systems, with the w-axis normal to the critical plane ∆ 
 
 
critical plane ∆ (Fig. 1b) can be expressed as follows, being w the unit 
vector normal to ∆: 

wSw ⋅= σσ      (2) 

and the normal stress vector N is obtained from Eq. 2 : 

( ) wSwN w⋅=     (3) 

By recalling Eqs 2 and 3, the shear stress vector C lying on the critical plane 
∆ is computed through the following expression: 

NSC w −=      (4) 

 

For multiaxial constant amplitude cyclic loading, the vectors N and C are 
periodic functions of time. Hence, it has been proposed [4] to consider the 
maximum value maxN  of N and the amplitude aC  of C  to determine the 

amplitude of the equivalent stress aeq,σ , namely: 
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Note that the amplitude aeq,σ  has to be compared with the fatigue limit afσ  

to perform fatigue limit assessment [4]. 



The definition of maxN  is trivial, while the definition of the amplitude of 

C is a complex problem owing to its time-varying direction. The procedure 
proposed by Papadopoulos [10] has been adopted in Ref. 4 to determine the 
mean value Cm and the amplitude Ca of the shear stress vector C : 
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where the symbol ⋅  indicates the norm of a vector. In the case of 

syncronous sinusoidal loading, the curve described by the tip of the shear 
stress vector C becomes an ellipse, whose major semi-axis coincides with 
the amplitude Ca of C [10]. 
 

In the case of random loading, an equivalent normal stress σeq can be 
defined by considering the norms )(tN  and )(tC  of the vectors N and C, 

that is [5] : 

2

2

2
)()()( ttt

af

af
eq CN 










+=

τ
σ

σ    (7) 

Such an equivalent stress ( )teqσ  represents a nonnegative one-dimensional 

random process. 
 
 
C Y C L E  C O U N T I N G  A N D  F A T I G U E  L I F E  
E S T I M A T I O N  F O R  R A N D O M  L O A D I N G 
 

Instead of directly cycle counting the variable ( )teqσ  as in Ref. 5 (in this 

way, changes in direction of the vector C are neglected), a new procedure is 
hereafter proposed. 

Thescalar value of the vector ( )tN  is taken as the cycle counting variable, 
since the direction of such a vector is fixed with respect to time (e.g. see 
Ref. 11). For the sake of simplicity, N(t) and C(t) (defined through its 
components uC (t) and vC (t)) are treated as discrete variables. Firstly, the 

sequence iN  is reduced by eliminating the time instants corresponding to 

non-extreme values (a peak/valley sequence *
jN  is obtained). 

The same number of time instants is also eliminated in the sequence Ci to 
obtain the new sequence *

jC . In order to preserve maximum amplitudes of 



the shear stress during the above reduction procedure, the sequence Ci  is 
treated as follows. Let i and i + K be the generic time instants corresponding 

to two successive extreme values of N.  The mean value ( )kii
mC +,  and the 

amplitude ( )kii
aC +,  of the shear stress are calculated for the two vectors iC  

and ki+C  with Kk ,...,1=  according to the following expressions (derived 

from Eq. 6 for a two-value discrete sequence, i and i + k), Fig. 2 : 
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Figure 2: Definition of shear stress amplitude for a two-value discrete 
sequence, i and i + k 

 

The vector 
ki+C , where k  is the time instant at which ( )kii

aC +,  attains its 

maximum for Kk ,...,1= , is retained in the new sequence *
jC . 

Through the cycle counting of the variable *
jN  (by using the rainflow 

method), we can determine the maximum value *
max,zN  for the z-th 

resolved reversal. Moreover, the amplitude *
,zaC  is obtained by applying Eq. 
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8 to the sequence *
jC , where now i and i + k are related to the time instants 

defining the range of the z-th reversal. Then, according to Eq. 5, the z-th 
amplitude of the equivalent normal stress eqσ  is given by: 
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Using the Miner linear damage rule for zaeq ,,σ  ,  total damage at time 

T0 is obtained as follows : 













≤

≥











=

∑
=

afzaeq

afzaeq

Z

z

zaeq

af

c

c

NTD

m

σσ

σσ

σ
σ σ

  for0

  for

2

1

)(

,,

,,
1

,,
00   (10) 

where Z is the total number of reversals (of *
jN  ), determined through the 

rainflow method, at time T0; N0, σaf and m are parameters obtained from the 
S-N curve for uniaxial tension-compression (N0 is the number of cycles at 
fatigue limit); c is a safety coefficient. 

If the total damage D(T0) is higher than or equal to the unity, the above 
criterion predicts the structural component failure for T < T0, viceversa in 
the case of D(T0) < 1. Hence, the calculated fatigue life of the component is 
given by: 
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E X P E R I M E N T A L  A P P L I C A T I O N  
 

Now the present criterion is assessed by analysing the results obtained from 
fatigue tests on round specimens made of 10HNAP steel, subjected to a 
combination of random proportional bending and torsion [6]. Such a steel 
presents a fine-grained ferritic-pearlitic structure, and its mechanical 
properties are : tensile strength mR  = 566 MPa, yield stress eR  = 418 MPa, 

Young modulus E = 215 GPa, Poisson ratio ν = 0.29.  The characteristic 
values of the S-N curve for cyclic uniaxial tension-compression with loading 
ratio equal to -1 are : afσ  = 252.3 MPa (for 6

0 10282.1 ×=N  cycles) and 



σm  = 9.82.  The shear stress fatigue limit afτ  is equal to 182.0 MPa. The 

coefficient c is assumed to be equal to 0.5. 
Stationary and ergodic random loading with zero expected value, normal 

probability distribution and wide-band frequency spectrum (0-60 Hz) has 
been applied to the above specimens.  High-cycle fatigue tests have been 
carried out for four combinations of proportional torsional, )(tMT , and 
bending, )(tM B , moments. The 14 specimens tested under 

1)(/)( =tMtM BT  are analysed in the following. 

The biaxial proportional random stress state σxx(t) and σxy(t) is calculated 

from the total moment ( ) ( ) ( )tMtMtM BT
22 += .  For each root-mean-

square value of ( )tM , the experimental fatigue life Texp has been 
determined. The theoretical procedure presented in the previous sections is 
applied to such experimental data, and fatigue life Tcal is calculated. The 
comparison between experimental and theoretical predictions is illustrated 
in Fig. 3, showing a fairly good agreement. 
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Figure 3: Comparison between experimental and theoretical fatigue lives 
 
 
 



C O N C L U S I O N S  
 

A multiaxial high-cycle fatigue criterion, based on the critical plane 
approach, for random loading is herein presented. An equivalent stress is 
defined as a nonlinear combination of the maximum normal stress and the 
amplitude of shear stress, acting on the critical plane. A cycle counting 
through the rainflow method is performed using the normal stress as the 
counting variable. A damage accumulation model is applied to the 
amplitude spectrum of the equivalent stress, in order to estimate fatigue 
endurance. The comparison between theoretical and experimental results 
appears fairly satisfactory for the cases analysed. 
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