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ABSTRACT: In industrial mass production ceramic parts are often disc shaped, especially
when producing electroceramics. To be able to assure a constant quality or to trace
changes in the production cycle a quick, cheap and meaningful mechanical testing of
samples of different production batches has to be performed. Often used approaches for the
direct testing of disc shaped specimens are either the Brazilian disc test or different disc
flexure tests. A very common disc flexure test is the ring-on-ring test. This test as well as a
modification of it, the ring-of-balls on ring-of-balls test, is quite easy to perform and to
evaluate but the gained results of these test assemblies are very vulnerable to geometric
imperfections of the tested disc and the support rings. 
In this paper a special variant of a disc flexure test will be discussed, the so called ball on
three balls test. In this test configuration a disc is supported by three balls and then axially
loaded from the opposite side via a fourth ball. Through to the loading on three well
defined points this test is quite tolerant to a slight out of flatness of the disc. 
Caused by the three support balls the stress state in the disc is not axisymmetric but shows
a threefold symmetry making an exact analytical assessment of the stress state in the loaded
disc rather difficult. Therefore former estimations of the stress amplitude are quite
inaccurate. In this paper a FE analysis of the stress field was performed and different
equivalent stress models were investigated and compared with the results of experiments of
uniaxial bent bar and biaxial bent disc Al2O3 specimens. Furthermore fractography was
used to localise the fracture origin on the tested Al2O3 discs and bars.

INTRODUCTION

Biaxial strength testing of brittle materials has been used for many years,
and there exists a wide variety of test assemblies described in the literature.
Typically, there are several advantages claimed for biaxial flexural testing
of discs compared with uni-axial testing (in tension or in bending),
including ease of test piece preparation, use for thin sheet materials and
testing of a large surface area free from edge finishing defects [1].
Furthermore many commercially produced components are biaxially loaded
and for them biaxial testing is –compared to uniaxial testing- the more
relevant test condition. 



A very common specimen geometry for biaxial strength tests is a disc
shaped sample. Several biaxial test methods for discs are known and most of
them are well described in the literature [2, 3, 4, 5]. In generally they can be
classified into two different groups of test assemblies. The first class is a test
assembly which leads to a axisymmetric stress field in the specimen, the
second one leads to a non- axisymmetric stress field.

To get an axisymmetric stress field the specimen needs a circular line
support and is loaded from the opposite side either centrally by a punch or
ball or by a smaller circular, concentric line load. The most common
axisymmetric test geometry is the ring-on-ring test [2]. This test is easy to
perform and to evaluate but also show often a quite significant scatter of the
results. Mostly this is caused by the influence of a small out of flatness of
the disc which leads to an undefined loading condition [2].

A common non axisymmetric loading condition is given by a set-up of
three support balls and a loading centrally from the opposite side of the disc.
This leads to a fairly high tolerance to any out of flatness of the disc, since
the three considered support points always lead to a stable mechanical
condition. On the other hand the resulting stress field in the specimen is
more complicated as for instance compared to a bending bar 

As in a former paper shown [6] the analytical solutions for the stress field
that are offered in the literature [7, 8] are unsatisfactory for the calculation
of the maximum tensile stress in the disc as they are based on thin plate
theory. Therefore a 3D Finite Element investigation of the stress field in the
disc has been performed [6].

For a comparison of the test results of this biaxial strength test with the
results of other test methods (e.g. the 4-point bending test, where an uniaxial
stress state occurs) two things have to be taken into account. First the
effectively loaded volume or surface of the specimens and second for the
biaxial stress state an adequate equivalent stress modell.

Experimental set-up 

The set up of the ball on three balls test is quite simple and can be seen in
figure 1.

The test assembly consists of six parts numbered from 1 to 6. These parts
are: the single loading ball (1), the three support balls (2 to 4), the inner
piston (5) and the centring device (6). The centring device all centres the
loading ball, the sample and the three support balls which allows very
accurate and reproducible positioning of these parts relative to each other. 



Figure 1: Experimental set-up of the ball on three balls test.

For the experiment the whole test assembly is inserted into a standard
universal tester. The three support balls are brought in contact with the
punch from tester, the centring device is lowered to allow bending of the
disc and the load on the balls is increased until fracture of the disc occurs.
The maximum load (i.e. fracture load) is measured and used for evaluation
purposes.

Finite Element model of the test rig 

As already stated above the test assembly is quite simple and allows a quick
strength testing of disc shaped samples. To be able to obtain comparable
strength values of the sample the individual fracture loads during the test
have to be converted to stress values in the disc. As the test assembly shows
a threefold symmetry this conversion is not trivial. Different analytical
solutions for the stress distribution and for the maximum tensile stress in the
disc are provided in the literature [1, 2, 5, 7, 8] but they differ quite
significantly in the calculated stress values. To be able to use this test as a
reliable strength test therefore the test assembly was modelled by the Finite
Element (FE) method. By taking advantage of the symmetries the model
could be reduced to the modelling of a sixth of the test assembly as can be
seen in figure 2a. 



Figure 2 a: Finite Element model of a sixth of the test assembly. The disc
has the radius R and the thickness t, the loading and support balls have the

radius Rb. The support ball touches the disc in the distance Ra from its
centre, the loading ball contacts the disc at its centre. 

2 b: Example distribution of the first principle stress on the tensile stress
surface of the disc. The stress is scaled from 0 to 100%. The maximum

stress is in the centre of the surface where an equibiaxial stress state occurs. 

An example of a resulting stress distribution on the tensile stress surface
of the disc for a ratio t/R = 0.2 and Ra/R= 0.87 can be seen in figure 2b. The
maximum stress is in the centre of the tensile surface of the disc. At this
point there exists an equibiaxial stress state. As already mentioned the stress
distribution shows a threefold symmetry and the tensile stress decreases
rather rapidly with radial distance from the disc centre. The maximum
tensile stress can be calculated according to equation (1):

2max t
Ff ���

, (1)

with the maximum load at fracture, F, the disc thickness, t, and a
dimensionless factor f. This factor f is a function of the disc geometry (t and
R), the support radius Ra and the Poisson’s ratio, �� according to:
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with the fitting constants c0 to c6 according to table 1.

TABLE 1: Constants for f depending on �

� = 0.2 � = 0.25 � = 0.3 � = 0.2 � = 0.25 � = 0.3
c0 -12.354 -14.671 -17.346 c4 52.216 53.486 50.383
c1 15.549 17.988 20.774 c5 36.554 36.01 33.736
c2 489.2 567.22 622.62 c6 0.082 0.0709 0.0613
c3 -78.707 -80.945 -76.879

For ceramic materials the location of the maximum stress it not
necessarily also the location of the fracture origin. This is an effect of the
distribution of defects which leads to a distribution of strength within the
specimen [9, 10]. Therefore two different specimen geometries or two
different stress distributions can only be compared if the effective loaded
volume (for volume sensitive tests) or the effective loaded surface (for
surface sensitive tests) is known [11]. This effective volumes and surfaces
can be calculated according to equations (3) and (4) by integrating the
normalised stress distribution in the specimen:
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In the equations above �e(x, y, z) is the equivalent stress at the co-ordinates
(x, y, z) used to calculate the effective volume or surface, �* is a suitable
scaling stress (e.g. the maximum tensile stress or the maximum equivalent
stress) and m is again the Weibull modulus. The integration is performed
over the whole volume or surface of the test specimen.

This calculation is performed within the FE module by calculating the
effective volume and surface of each element and the summing them up.

For the evaluation a suitable equivalent stress model has to be chosen.
Different equivalent stress models are discussed in the literature, e.g. the
maximum principle stress model, the v. Mieses equivalent stress or the
principle of independent action (PIA). The first two mentioned equivalent
stress models are widely known. The first principle stress model only counts



the maximum tensile stress in the specimen, the v. Mieses model assumes
both tensile and compressive stresses with the same importance.

The equivalent stress according the PIA approach, �e,PIA, on the other
hand takes only the non-negative (i.e. tensile) principle stresses �I, �II and
�III into account. It is assumed that the different tensile stress components
act independently and that their net effect according the probabilities of
failure is expressed as a weighted accumulation (5), 

m m
III

m
II

m
IPIA,e ���� ��� , (5)

with m being the Weibull modulus.
Based on these different equivalent stress models Veff and Seff of the

specimens (no. 1) can be calculated and the gained strength values can be
converted to a specimen (no. 2) with different Veff or Seff according to [11]:
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Experiments on Al2O3 specimens

For the experimental verification of the FE investigations tests were
performed on Al2O3 discs. The material was a standard AL23 (supplied by
Friatec) with a diameter of 20 mm and a thickness of 3 mm. The discs were
both tested with the as sintered surface as well as with a machined (a
grinding finish with diamond grit D15 on the prospective tensile surface)
surface. Furthermore small bending samples were machined out of these
discs to perform 4-point bending tests as a comparative uniaxial test. For all
test conditions 30 samples were tested to allow a meaningful Weibull
analysis of this tests. The results of these tests are summarised in table 2. In
this table the two Weibull parameters, the characteristic strength, �0, and the
Weibull modulus, m, are listed as well as its 95% confidence intervals. The
strength values listed are the first principle stress values and the PIA
equivalent stress values.

From this table it can be seen that the results of the strength tests (�0, m)
differ quite significantly when only the maximum principle stresses are
compared. A obvious result is that the samples with the machined surface
have the higher strength values. Two different effects are claimed for



causing the observed effect: Machined the surface reduces the size of flaws
and therefore the measured strength is higher. Additionally compressive
residual stresses in the tensile surface might be induced during the
machining. For the evaluation this residual stresses were assumed to be 0.

TABLE 2: Results of the strength tests on Al2O3 specimens.
Listed is the characteristic strength �0 (i.e. the maximum tensile stress in the bars or disc),

and the Weibull modulus, m, both with a 95% confidence interval in brackets. Furthermore
the uniaxial tensile stress results based on the PIA equivalent stress model are shown.

Test method �0  [MPa] m
�e,PIA
[MPa]

effV
PIA,e�

[MPa]

effS
PIA,e�

[MPa]

4-point bending 338
(330 / 346)

15
(11 / 18)

338
(330 / 346)

338
(330 / 346)

338
(330 / 346)"as

sintered"
surface ball on three balls 348

(343 / 354)
17

(14 / 21)
363

(358 / 370)
357

(352 / 363)
334

(329 / 340)

4- point bending 365
(359 / 371)

21
(16 / 26)

365
(359 / 371)

365
(359 / 371)

365
(359 / 371)machined

surface ball on three balls 385
(380 / 390)

21
(16 / 26)

398
(393 / 403)

386
(381 / 391)

371
(366 / 376)

The second result is that for the same surface conditions the ball on three
balls test shows significantly higher strength values compared to the
bending test results. To compare the strength values correctly identical
effective volumes or surfaces have to be taken into account. In this work the
results of the ball on three balls test are converted to the effective volume
and surface of the 4-point bending test. Even for this case using the
maximum principle stress model the strength results still differ significantly.
The same holds for the v. Mieses equivalent stress approach. Finally the
results of the PIA equivalent stress model are also shown in table 2
considering the effective volume effV

PIA,e�  and surface effS
PIA,e� . It was found that

the confidence intervals of the different test methods overlap if the strength
values are recalculated to the same effective surface using the PIA approach. 

The next logical step is to investigate if these tests are indeed surface
sensitive. If this is the case then the fracture has to start at or very near the
surface of the discs and bending bars. To prove this the fracture surfaces of
the discs and bars were investigated using a SEM. Figure 3 shows a typical
fracture origin near the surface.

All analysed fracture origins were at or at least very near the tensile stress
surface of the discs and bending bars. This actually shows that these tests



are indeed surface sensitive, at least for the material investigated.



Figure 3: Fracture origin at the surface of a sample tested in the ball on
three balls test. The origin is indicated with an arrow.
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