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ABSTRACT: New approach to strength analysis of thin-walled structural elements of ani-
sotropic materials weakened by cracks under conditions of plane stress and bending is 
stated. The fracture criterion is grounded on the notion of the material damage measure in 
the process zone at the crack tip and on the assumption of the crack growth towards the 
highest possible value of this measure and its reaching the critical value. The criterion is 
employed in the investigation of the critical state of the highly anisotropic plate with a 
crack. With the change of the loading angle in the plates with high anisotropy the instabili-
ty of initial crack motion angle is possible. The analysis of the examples demonstrates the 
quantitative and qualitative impact of the proposed generalizations on the initial cracking 
angle and the strength of the structure. 

 
 

INTRODUCTION  
 

Plates of anisotropic ma-
terials, in particular, of re-
inforced concrete or com-
posites, are popular ele-
ments of building construc-
tions. They are widely used 
in machine building, trans-
port construction etc. The 
main cause of their failure 
is the growth of cracks, ei-
ther already existing in the 
manufactured product or 
arising in it and reaching 
the critical size on account 

of fatigue. The strength and reliability analysis in all cases envisages the use 
of materials brittle fracture methods. These methods are well known and 
approved by scientific and engineering practice with respect to isotropic ma-
terials [1]. There is a deficiency of experimental data concerning the pa-
rameters of static crack growth resistance [2]. Far less attention has been 

Figure 1: Scheme of the problem. 



paid to working out fracture criteria of anisotropic materials with cracks [2, 
3]. The practice of formulating the fracture criteria of anisotropic materials 
with cracks amounted to nothing more than the use of isotropic materials 
criteria, in which the account of the influence of anisotropy was reduced to 
the formal orientation dependence ( )Ic IcK K= +β γ . 

One or several methods of analysis belonging to one of the three main 
criteria classes (energy, force and strain ones) are used depending on the 
character of loading, type of material, availability of experimental data con-
cerning mechanical and strength characteristics of the used material, peculi-
arities of the structure and its function. Force θθσ -criterion or criterion of 
maximal intensity of singular part of tensile stresses (F.E. Erdogan, G.S. 
Sih, G.P. Cherepanov, V.V. Panasyuk, L.T. Brezhnytskiy), being generali-
zation of Irwin’s criterion, is one of the simplest but universal enough, ef-
fective and experimentally approved criteria. 

This paper presents fracture criteria of anisotropic plates with cracks, 
which are grounded on a new conception for notion of material damage in 
the process zone. Normalization of the stress levels, strains or energy by 
means of resistance ability provides more a reasonable evaluation on the 
material resistance as far as it does not depend on the stress-strained state 
but on its relationship with crack growth resistance. Such measures may be 
considered as monotonely increasing. 

 
 

1. FRACTURE CRITERIA OF ANISOTROPIC PLATES WITH 
CRACKS  

 
In the vicinity of the investigated crack tip A  (Fig. 1) we consider the 

damage function in the process zone at the crack tip ( ), , ,p lΠ β γ  accepting 

the crack to be growing in the direction *=β β  of its maximum, at such 
value of generalized parameter of loading *p p= , when the damage reaches 
the critical value:  

( ) ( ) ( )
*

* * * * *max , , , , , , , , , , .p l p l p l
=

Π = Π Π = Π       β ββ
β γ β γ β γ     (1) 

Here β is an angular coordinate of local polar coordinate system Arβ  with 
origin A ; γ  is tangent orientation to the axis of the crack at its tip with re-
spect of the main direction of anisotropy Oξ  with the highest elasticity 
modulus ( ,O Oξ η are the principal anisotropy axes). The first equation 

helps to calculate the initial motion angle *β  while the second calculates the 
limit loading *p . 



Force measures of damage. Let as introduce the force measures of dam-
age 

IcK K=β βπ , r r IIcK K=β βπ ;                    (2) 

( )
0

lim 2
r

K r
→

=β ββπ σ , ( )
0

lim 2r rr
K r

→
=β βπ σ ;          (3) 

,Ic IIcK K  are fracture toughnesses for mode-I and mode-II fracture. 
By analogy with Mohr’s criterion, which defines fracture initiation on the plane 

const=β  by the condition ( ), 0rf =ββ βσ σ , we shall present the damage function 

Π  with the account of the possible effect of additional parameters iη , which charac-
terize the effect of nonsingular factors upon the fracture resistance in the form of the 
function ( ), ,r iΠ = Π β βπ π η . Neglecting the parameter iη  and presenting 

( ), rΠ = Π β βπ π  in the form 4 4
rΠ = +β βπ π  at * 0=β  and * 1Π =  we shall ob-

tain the Panasyuk – Andreikiv fracture criterion: 4 4 4 4
1 2 1Ic IIcK K K K+ = . 

Neglecting tangent stresses (the mode-I fracture - by normal separation) in 

( ), ,r iΠ = Π β βπ π η  we shall obtain ( ), iΠ = Π βπ η . Now, considering 
4 2

0,2, ,i iΠ = + =β ββπ η η σ σ * 1Π =  we shall get another criterion of the above 

mentioned scientists: 4 4 2 2
0,2 1I IcK K + =ββσ σ . If now we neglect parameters iη  

for the force damage function, the function of mode-I fracture ( ), iΠ = Π βπ η  in the 

simplest linear case of dependence on βπ  may be identified with the first 

force damage measure: Π ≡ βπ . 
Criterion (1) with the force damage function 

( ) ( ) ( )1
*, , , , , , , 1Icp l K p l K −Π ≡ + Π =ββ γ β γ β γ .            (4) 

generalize in this case θθσ -criterion, in which the notion of the intensity fac-

tor of circumferential hoop stress Kβ  is also used. Here ( )IcK +β γ  is criti-

cal value of the intensity factor Kβ  where the nonfatigue crack growth is 
initiated and which depends on the motion direction of the mode-I crack 
with respect to principal axes ,ξ η. As far as IcK K≤β , then *0 1≤ Π ≤ Π = . 

If ( ) constIcK + =β γ (it is always so for isotropic materials), the condition (1) 
with measure (4) provides classic relationship for isotropic material: 

( ) ( ) ( )** * * *max , , , , , , , , , , IcK p l K p l K p l K
=

   = =   β β β
β ββ

β γ β γ β γ . (5) 

If we consider ( )Ic IcK K= +β γ  in (5), the first equations in (1), (4) and (5) will 

show different values of *β  when the anisotropy is sufficiently high. Though the sec-



ond equations in (1), (4) and (5) are identical, the calculated by them limit loadings *p  
will vary due to the differences in calculations of *β . 

Strain damage function. Generalizing cδ -model and the concentration of the 
limit crack tip opening displacement and linking fracture with plastic strain 
we shall use the following determination of the measure of material damage 
at the tip crack: 

( ) ( ) ( )1
*, , , 2 , , , , , 1Icp l v p l L −Π ≡ + Π =ββ γ β γ δ β γ .                (6) 

Here ( )2 , , , ,v p l Lβ β γ  is a normal vector component of possible plastic 
branch opening (plastic zone) at angle β  with crack plane; L  is characteris-
tic linear size of the plastic branch which is determined under finity stress 
condition at its tip; ( )Ic +δ β γ  is experimentally obtained critical COD Icδ . 
After achieving this COD, according to the Leonov – Panasyuk criterion the 
mode-I crack length change begins. For anisotropic materials the critical 
COD must depend on the mode-I crack orientation with respect to main ani-
sotropic material axes. 
 
 
2. TENSION OF ANISOTROPIC PLATE WITH A RECTILINEAR 
CRACK 

 
When the thin-walled element of the construction is affected only by the 

tension loading 11 1 22 2,∞ ∞= =σ σ σ σ , the intensity of the circumferencial stress 
factor Kβ  in the vicinity of the crack tip is determined according to the re-
sults of works [3] by the relationship: 
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where ( )2 2
1 2 1 22 sin cos , / 2 sin2I IIK l K l = + = − π σ α σ α π σ σ α are 

the stress intensity factors at the crack tip, corresponding to local symmetric 
and antisymmetric stress condition; α  is the effect angle of the principal 
stresses 1σ  with respect to crack orientation axis Ox . The material anisot-
ropy is characterized by the complex parameters 1 2,s s , which are the roots 



of the characteristic 
equation of the corre-
sponding elasticity the-
ory problem [4]. From 

*=β β  roots of the sec-
ond equation (7) the one, 
which assigns the maxi-
mum value to the left 
part of the first equation 
is chosen. 

For specific cases of 
the plate material equa-
tions (7) were solved by 

numerical methods. We considered the cases of tension of a boundless 
orthotropic plate with l  long crack, placed at the infinite points by an uniax-

ial uniform stress field 

22 2 11 1, 0p∞ ∞= = =:σ σ σ σ  
at angle α  with the crack 
axis, which in its turn, is 
inclined with respect to the 
principal orthotropy axis 
at angle γ . Figures 2, 3 

shows the * ~β α and 
0 avg
* * * ~Icp p l K α≡  de-

pendences for the trans-
versal isotropic band car-
bon plastic LU-1 with a 
medium orthotropy meas-
ure / 8.89A E Eξ η≡ = . 

Here 2*σ  is the critical value of 2σ ; avg 250.5IcK =  3 / 2Nmm  is the average 

value of ( )IcK β ; 3 / 2
0, 0

28NmmIcK
γ β= =

= ; 3 / 2
0, / 2

473NmmIcK
γ β π= =

= . 

Here lines 1 correspond to the numeric solution of equations (7) for iso-
tropic material; lines 2 are obtained for anisotropic material with assumption 
that ( ) avgconstIc IcK Kβ = = ; lines 3 refer to linear approximation of experi-
mental data [2]; lines 4 refer to physically more real smooth approximation 
of the some experimental data. 

Conclusions. The following main conclusions can be drawn out from the 
performed calculations: 

 
Figure 2: The initial crack motion angle *β  vs. 

crack orientation angle α  ( 0=γ ). 

Figure 3: The dependence of the dimen-
tionless critical stress 0

*p  on crack orientation 
angle α  ( 0=γ ). 



1. An account of the material anisotropy sufficiently affects the predicted 
value of the angle *β  and affects less the dimensionless limit loading. A 
motion angle sign is the same as in the isotropic material – from the closer 
direction of tension.  

2. An account of angular relationship IcK  affects the predicted crack ini-
tial motion angle value. For the angle values close to 

/ 2 ( 0, 1, 2,...)k k+ = = ± ±β γ π  the smooth approximation (lines 4) pro-
vides more significant results. 

3. Approximation IcK  by its average value avg
IcK  (such situation corre-

sponds to the use of θθσ - criterion) gives values close enough or even identi-
cal to the results of the calculations for isotropic material. 

4. An account of IcK  dependence on angular coordinate affects essen-
tially the predicted values of the crack initial motion angle. In case the crack 
is oriented along the principal axis of minimal IcK  (maximal elasticity 
modulus), these values are lower than the ones calculated for isotropy cases 
or avg

IcK  ( θθσ -criterion). In case of crack orientation along the principal axis 

of maximum IcK  (minimal elasticity modulus), these values are higher than 

the ones calculated in isotropy cases or avg
IcK . The exceptions are angles α  

close to / 2π  at which in case / 2=γ π  the *β  value reaches considerably 
high positive values.  

5. In general, the usage of linear approximation is not only physically in-
correct and inconvenient in the analytical transformations but in all cases it 
gives improbable results for close to mode-I ( / 2;α π ) cracks. On the other 
hand, linear approximation gives stepwise results for *β  angle at the crack 
orientation along the maximal elasticity modulus axis. The reason is that 
criterial function ( ),Fβ β γ  due to ( )IcK β  function peculiarities has several 

local maxima and during the continuous change of *β  angle the location 
changes continuously as well as their values. Therefore, local maxima, lo-
cated in other places, may play the role of global maxima in case of diffe-
rent β . Such effect manifested itself only in the case of linear approxima-
tion, however, at the higher measure of material anisotropy. The same effect 
may be expected in the case of smooth approximation when the ac-
tual IcK distribution tends to the linear one with high gradient. The calcula-
tions performed for the low anisotropy materials EF 32-301 ( 1.56A = ) and 
ETF ( 2.37A = ) did not reveal the continuous change of *β  even when lin-
ear approximation had been applied. So, in the case of high material anisot-
ropy the unstable change of angle *β  may be expected. 



6. Limit stresses change continuously and are of minor difference at any 
way (linear or smooth) approximation of angular dependency ( )IcK β . 

7. At 0→α  the calculations give the predicted result 0
*p → ∞ . 

8. At / 2→α π  the calculations by anisotropy models and avg
IcK  give 

quiet equal values of 0
*p . An account of angular relationship for the material 

of high anisotropy measure provides the decreased strength. 
 
 

3. BENDING OF ANISOTROPIC PLATE WITH A RECTILINEAR 
CRACK  

 
The second case applies to the cracked plate bending by bending mo-

ments 1 2,m m  in mutually 
perpendicular planes. The 
crack is oriented along axis 
Ox , which forms angle γ  
with principal orthotropy 
axis Oξ  and angle α  with 
the plane of moment action 

2m  (see Fig. 1). On the su-
perposition principle the 
problem may be split into 
two ones: the problem of 
the stress-strained state of 
the same plate without 

crack under applied to it loading and the problem of the state disturbed by a 
crack, when the bending intensity moments m− , opposite in sign to those, 
obtained on the crack line in the first problem, are applied to the crack 
edges. Then the system of equations (1), (4) will have the following form: 

( )5 6 5 61 2
2 1 1 2 2 1

1 2 1 2

1
Re Re ,I II Ic

T T T Tz z s s
K p s p s K q q K

h T T h T T

      − − − − =      ∇ ∇      
β  

( )

( )

5 6
2 1 1 2

1 2

5 61 2
2 1

1 2

1
Re

Re 0.

I

Ic

II
Ic

T Tz
K p s p s

h K T T

T Tz s s
K q q

h K T T

  ∂ − +  ∂ ∇   
  ∂+ − =  ∂ ∇   

β β

β β

                          (8) 

Figure 4: The dependence of initial crack 
angle motion on orientation of principal ani-

sotropy axes. 



Here z  is a coordinate along the plate thickness ( h z h− ≤ ≤ ); ,js  ,jp  

,jq  ∇  are known complex parameters [3, 4]; ( )i iT T= β  are known func-

tions [3] of angle β ; 21.5 / 2IK mh lπ−= , II IK CK= − ; C  is known real 
constant [3], which is defined by the complex parameters ,js ,jp ,jq ∇ ; 

( )1 1m m f= α , ( ) 2 2
1 sin cosf α α η α= + , 2 1/m m=η . 

For the concrete data 
of mechanical properties 
of the cracked plate ma-
terial and its loading by 
moments 1 2,m m  equa-
tions (8) was solved by 
numerical methods. 
Thus, if 2 0m = , the limit 
values 1 1*m m=  of exter-
nal moment 1m , after 
reaching which the initial 

crack motion begins, were found as well as the values of its initial motion 
direction angle *=β β . Figures 4, 5 show the dependence of angle *β  and 
of the dimensionless basic function of the limit moment 

( )0 0 ( ) ( )
* 1* 1* * * *,isot isotm m m m m≡ = β γ  on angle γ . Here 0

1*m ≡  

( ) 2 ñåð
1 2 Icm l h K

−≡ = ( ) ( )1
* * 1,m fβ γ α− . Lines 1 refers to the isotropic case; 

lines 2-4 refer to the anisotropic case if avg
Ic IcK K=  (corresponds to calcula-

tion by θθσ - criterion) of linear and smooth approximation of experimental 

data for ( )IcK β  in glass-reinforced plastic LU-1. 
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Figure 5: The dependence of dimensionless 
limit moment 0

*m  on angle γ . 
 


