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ABSTRACT: A new damage model for concrete is proposed, with the 5 following
essential features: it accounts for (i) anisotropic damage, and (i) asymmetry be-
tween tension and compression; (iii) stresses are continuous with respect to strain
and damage; (iv) a complete loss of stress-bearing capacity is possible; (v) the model
fits within the framework of “standard generalized materials” (as defined by Halphen
and Nguyen), and the free energy is a conver function of strain and damage (con-
sidered separately). The essential novelty of the model is the convexity of the free
energy with respect to damage, which entails nice mathematical properties in its nu-
merical implementation. A von Mises-like dissipation potential is adopted for the
evolution of damage. The very simple model thus defined involves only one material
parameter in addition to elasticity constants. Numerical tests exhibit satisfactory
predictions in simple tension, but somewhat less so in simple compression. Possible

future improvements are envisaged in conclusion.

INTRODUCTION

Constitutve modelsfor concreteare too numerousor an exhaustve list to
be possiblehere. Among these,mary rely on the phenomenologicathe-
ory of damagenitiated by Kachane [1]. This approachseemsespecially
well suitedfor the descriptionof the mechanicabehaiour of concretefor
2 reasons.Thefirst oneis that the compleity of microscopicmechanisms,
including the formationand propagatiorof multiple microcrackstheir pos-
sible closurein compressionthe presencef friction, etc.,seemdo preclude
ary otherapproachthana heuristicone. The secondreasonis thatin mary
instancesthe behaiour of concretemay safely be regardedas essentially
elastic-brittle whichis the preferreddomainof applicationof damageheory



If oneconsiderdamagemodelsaccountingfor anisotropy (arisingfrom
the preferredformation of cracksperpendicularlyto the direction of major
tension),candidatesre muchlessnumerous Notablecontritutionsaredue,
amongothers,to Murakami[2], Fichantetal. [3], Chabochd4], Dragonet
al. [5], Ladevéze[6], YazdaniandKarnawat[7], FrantzislonisandDesai[8].
Amongthesethemodelsof Fichantetal., ChabocheDragonetal. andLade-
vézeattemptto accounfor theasymmetnbetweertensionandcompression,
arisingfrom crackclosurein compression.

The aim of this work is to proposea first, simpleversion(leaving room
for laterimprovementsf a modelwith thefollowing features:

(i) Accountfor anisotropicdamage through consideratiorof a second-
ranksymmetricdamageensor

(i) Accountfor asymmetnpetweertensionrandcompressiorthroughcon-
siderationof the“positive andnegative parts”of the straintensor(com-
binedwith thedamageensor).

(i) Satisfytherequiremenof continuityof thestressesvith respecto both
strainanddamage.

(iv) Allow for total damaggcompletevanishingof stress).

(v) Fitwithin theframenork of “standardyeneralizednaterials”,asdefined
by Halphenand Nguyen[9], andinvolve a free enegy corvex with
respecto boththe strainanddamageensors.

Points (i) and (ii) do not requireary further comment. Requirementiii)
seembvious but, asnotedby Chabochd4], is not so easilyfulfilled when
combinedwith point (ii); severalmodelsin factviolateit. Requirementiv)
precludedor instancethe useof the modelsof Dragonet al. [5] (who make
theassumptiorof weakdamagepndLadereze[6] (who allowsfor totaldam-
ageonly asymptotically).But the mainnovelty hereis the fulfilment of point
(v). Thoughnot compulsoryfrom a physicalviewpoint, this featureis math-
ematicallydesirablebecausét leadsto aneasynumericalimplementatiorof
themodel.Indeedit canbeshavn thatthe problemof finding, atagivenpoint
andfor a fixed incrementof strain,the final value of the damageparameter
with a classicaimplicit algorithm,thenreducedo finding the minimumof a
convex functionandis thusliable to efficient algorithms.



THE FREE ENERGY

Expression disregarding asymmetry between tension and com-
presston

For clarity reasonsyve first forgetaboutthe asymmetrybetweenensionand
compression. The (second-ranksymmetric)damagetensoris denotedD.
Thespecificfreeenegy ®(e, D) is takenin theform

O(e,D) = g [tr(B.€)]* + % tr[((B.e+eB)’], B=1-D (1)

=0 = ?9—(f =\tr(B.e) B+ g [B.(B.e +€.B)+ (B.e+€B).B]. (2)

Requiremen(i) of the Introductionis satisfiedandpoint (ii) is left out here.
The satishctionof requirementiii) is atrivial consequencef eqn(2). This

equationalsoimmediatelyimplies that for total damageD = 1, B = 0),

o = 0. Thusrequiremen{(iv) is satisfied. This is obtainedby considering
thefreeenegy, whichis afunctionof strain, ratherthanthe morecustomary
(in the context of damageheory)free enthalpy whichis afunctionof stress

Consideratiorof thefree enthalfy would leadto anexpressiorcontainingthe
tensor(1 — D) ! sothatthe limiting valueD = 1 could not be reached.
Also, it is easily shavn that if one eigervalue of D, say D, is unity, the
correspondingstresscomponentsy; is zero, as desired(vanishingstressin

the direction of total damage). (However, the componentsr, ando;3 are
zeroonly if the strainand damagetensorsare diagonalin the samebasis).
Finally, the corvexity of ® with respectto both e and D (requirementv))

resultsfrom thatof thefunctionsz — z? and A — tr(A?), plusthelinearity
of tr(B.e) andB.e + €.B with respecto e andB.

Incorporation of asymmetry between tension and compression
The positive and negative partsof a real z aredefinedby x, = Sup(z, 0)
andz_ = Inf(z,0), andthoseof a symmetricmatrix A = > Aje; ® e;
(the A; ande; beingthe eigervaluesand normalizedeigervectorsof A) by
A+ = Z AH_ei X e; andA_ = Z Ai_ei X e;.

In orderto accountfor the asymmetrybetweenensionandcompression,
we mustdistinguishbetweenthe positve and negative partsof e (possibly
combinedwith B); damageshouldappearonly in the positive part, since
cracksareineffective in compressionMore specifically we considera free



enepy of themodifiedform

d(e,D) = % [tr(B.e)]+2+% (tr e)f2+% tr [(B.e + €B) ] +utr(e_?) (3)

= o= ?9—(3 =A[tr(B.e)]s B+ A(tre)_ 1

+ g [B.(B.e+€.B), +(B.e+€B), .B|+2ue_. (4)

Requirementsi) and(ii) arenow satisfied.The modelhowever suffersfrom

the following defects. The term ) [tr(B.€)], B of the stressegpertaining
to tension)shouldvanish preciselywhenthe term A (tr €)_ 1 (pertaining
to compressionpecomesnon-zero,and vice versa. This is unfortunately
not true becauser(B.€) andtr e do not vanish simultaneously except if

B is a multiple of the unit tensor Also, “changesof regime” in the terms
£B.(B.e +€.B), + (B.e + €.B), .B] and2u e_ arenot simultaneousi-

ther becausehe eigervaluesof B.e + €.B and e do not vanishsimultane-
ously, exceptif B ande arediagonalin the samebasis. Numericalstudy of

the modelpredictionsin simple caseshowever shavs that thesedeficiencies
are of little practicalimportance. Requirementiii) is satisfiedbecausdhe

functionsz — z. and A — A_. arecontinuous.Concerningrequirement
(iv), if D = 1 (B = 0), thetermsof the stressepertainingto tensionvanish,
asdesired.Also, if oneeigervalueof D, sayD;, is unity, thetermspertaining
to tensionin the component;; vanish. The corvexity of & with respecto

e andD (requiremen(v)) is a consequencef the corvexity of thefunctions
T — z4% A — tr(AL?) andthelinearity of tr(B.e), tr €, B.€ + €.B with

respecto e andB. Theonly non-trivial propertyhereis the corvexity of the

functionsA — tr(A_.?), establishedn Badels thesis[10].

It may incidentally be remarled that simultaneouslysatisfying require-
ments(ii) and (v) is a difficult task. The form (3) was arrived at only af-
ter several unsuccessfulrials. For instance,suchappealingexpressionsas

tr (\/E.e.\/§)+2] ,tr[(B.e.B), %], tr(B.e, 2.B), all turnoutto benon-cowex
with respecto eitherD or e.

Incorporation of bounds on the damage tensor eigenvalues
The eigervaluesD; of D shouldvary betweenO (no damage)and 1 (total

damagen thedirectionof theeigervalue). Theevolution equatiorfor D (see
below) will ensurethe conditionsD; > 0 (increasingdamage)andtherefore
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D; > 0 sinceD = 0 initially. TheconditionsD; < 1 canbeenforced,jn an
admittedlysomeavhat formal and artificial, but mathematicallynaturalway,
by modifying expression(3) into

d(e,D) = % [tr(B.€)],* + % (tre)_?

+ % tr [(B.e + €B),%] + pu tr(€_2) + T(_ooyy(MaxD;) , (5)

7. denotingtheindicatrix function of the corvex setC (Z¢(x) = 0if x € C,
+oo if x ¢ C). This functionin (5) actsasa “barrier” preventingthe D;
from exceedingunity. Its introductionpreseres convexity with respectto
D becauseghe domain(max D; < 1) is corvex in the spaceof symmetric
matrices(consequencef Rayleigh-Ritzs theorem).

THE DISSIPATION POTENTIAL AND THE REVERSIBILITY DO-
MAIN

Within the framework of generalizedstandardnaterials the evolution of D
is governedby somecorvex dissipationpotential A (D) asfollows:

0P
oD ©)
wherethe symbolsd and = denotethe sub-gradientand Legendre-Fenchel

transformof acorvex function. Thisevolutionequatiorautomaticallyensures
the non-ngativenesf thedissipationF? : D.

FP € 9A(D) « D € dA(FP), FP =

The dissipation potential

The simplestpossibleexpressionof A(D) is k HDH wherek is a positive
materialconstanandHDH = (D : D)!/2 thenormof D. However, to ensure
the conditionsD; > 0, we modify this expressiorinto

A(D) = k||B|| + Tip, o0 (min (D)) (7)

wherethe(]')),- denotetheeigervaluesof D. Theindicatrix functionprevents
the (D); from becomingnegative, which sufficesto warrantthatthe D; are
non-decreasingseeBadels thesis[10]). The constantt in (7) is the only

adjustablematerialparametem the model.
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The reversibility domain

The function A(D) being positvely homogeneousf degreel, its Legen-
dre-FenchelransformA (FP) is theindicatrix functionof somecorvex setin
the spaceof thermodynamidorcesF?, which is the reversibility domain. It

is shovn in Badelsthesis[10] thatthis setis definedby
JEP) = [FP, |~k <0, [FP.] = (FP :FP)2 . (9)

Condition(6), thentakesthe familiar, plasticity-theory-lile form

of >0, f(FP)yn=0. (9)

” .
< =n_J
FED) <0, D=ngpp,n2

NUMERICAL EXAMPLES

Model predictionsare presentedn Figures1 for simple tensionand 2 for

simple compressionthe materialconstantare £ = 30 GPa, v = 0.2 and

k = 310~* MPa Theaxial stressr;; is displayedasafunctionof axial strain

€17 andlateralstraine,,, andalsovolumetricstraintr e for simplecompres-
sion. In simple tension,the resultsare qualitatively satishctory Note that

thesingleparametek governs(togethemwith E) boththe peakstressandthe

subsequenstressdrop; also, althoughthis is not shavn here,damagebeing

anisotropic,it remainsnil in direction2 (sincees; < 0) sothat one could

apply somenon-zerostressoy, aftero;;. Predictionsn simplecompression
arelesssatishctory: 1) damagegarisingfrom the positive e52) occursfor too

small valuesof |o1:|; 2) the stressdrop quickly ceasesand the behaiour

againbecomeslasticwith an only slightly degradedstiffness(becauseal-

thoughdamagebecomedotal in direction2, it remainsnil in directionl).

DIRECTIONSFOR POSSIBLE IMPROVEMENTS

Although the model proposeddoespossessiew, nice features,t obviously
suffers from its excessve simplicity, ascould be anticipatedirom its single
adjustableparameter Drawback 1) just evidencedcanbe remediedby con-
sideringanon-constank of theform ko — k; (tr €)_; thenit becomedargerin

simplecompressiorthanin simpletension. Anotherpossibilityis to replace
e by e — €' in (5) wheree® is someirreversiblestrain,for instanceof theform

a D.(1 — D)~!; this modifiesthe expressionof F” so thatdamageoccurs

6



2.5
—_ E
Dc? 2.0 £ _
S — axial stress
%’ 1 5. vs. axial strain
&7 ... axial stress
1.0 4= vs. lateral strain
0.5
% Strain (x104)
0.0 Ly .

0.0 1.0 2.0 3.0 4.0

Figurel: Model predictionsn simpletension.

laterin simplecompressionDrawback?2) is connectedo the factthatdam-
ageis consideredo arisefrom the sole positve component®f €. It canbe
remediedby introducingdamagealsoin the “compressiorterms” of ®; but
this requiresintroducingdistinct damageensorsn the “tension” and“com-
pression”terms, otherwisethe desiredasymmetrywould be lost. All these
developmentsarecurrentlyunderprogress.
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Figure2: Model predictionsin simplecompression.
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