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ABSTRACT: A simple thermoelastic-plastic problem is solved to show an effect of cyclic
temperature fields of a constant amplitude on the development of damage in thin plates.
The plate considered is a disc with a central circular hole whose material obeys the von
Mises yield criterion with a constant yield stress. The temperature field is assumed to be
independent of the space coordinates. It is shown that the equivalent plastic strain at the
hole edge increases after each temperature cycle even if the temperature amplitude is
relatively small. A strain-based approach to damage evolution is adopted to demonstrate
an effect of such temperature cycles on fatigue life. Even though the very simple structure is
considered, it is believed that the sensitivity of plastic strain to the variation of temperature
is a general feature for thin plates of arbitrary in-plane shape and, therefore, this feature
should be taken into account in numerical analyses.

INTRODUCTION

Thin plates with holes have many structural applications. A hole is a stress
concentrator where a plastic zone and fracture usually start to develop. A
significant amount of research has been performed in the area of stress and
strain analysis of such structures. In particular, thermomechanical problems
have been considered in [1] – [5]. Even though closed form solutions
involve more assumptions than numerical solutions, the former are very
useful for studying qualitative effects. In particular, closed form
elastic/plastic solutions may be obtained under the assumption of plane
stress. Experimental observations indicate that for thin plates this
assumption is much more appropriate than that of plain stain [6]. However,
the application of computational models to plane stress problems leads to
specific difficulties non-existent in other formulations [7]. In the case of
thermoelastic-plastic problems, one of such difficulties may be related to the
fact that the area of a plastic zone increases very rapidly with the
temperature. It has been demonstrated in [5] where a closed form solution to



a simple problem is given assuming that the temperature is a monotonic
function of the time. Here this analysis is extended to include cyclic thermal
loading. Also, an effect of such loading on the evolution of fatigue damage
is discussed. The problem is as follows. A circular disc with a central
circular hole is inserted into a container such that its outer radius is
motionless during the process. The material of the disc is assumed to obey
the Mises yield criterion. At the initial moment the disc has no stress. A
cyclic temperature field and the constraints imposed on the structure may
lead to the accumulation of plastic strain. Then, the evolution of fatigue
damage can be found by applying strain-based approaches to fatigue life
prediction. The main result of the present paper is that the temperature
amplitude at which a significant plastic zone develops is very small. In other
words, the development of plastic deformation and, as a result, of damage is
very sensitive to the temperature field.

STATEMENT OF THE PROBLEM

Consider a thin disc of radius R0 with a central circular hole of radius r0,
which is inserted into a rigid container of radius R0. The state of stress   is
axisymmetric   and  two - dimensional  ( )0=σ z   in  a  cylindrical
coordinate system rθz with its z-axis coinciding with the axis of symmetry
of the disc. The disc has no stress at the initial temperature. Thermal
expansion caused by a cyclic change of temperature (Figure 1) relative to
the reference state, T, and the constraints imposed on the disc affect the zero
-stress state. The temperature field is assumed  to  be  uniform. The  material

of the disc obeys the von Mises yield criterion. For the problem under
consideration, this yield criterion may be written in the form
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Figure 1: Cyclic temperature field – notation.



where k is the shear yield stress, a material constant independent of the
temperature, σ is the hydrostatic stress and sr is the deviatoric radial stress.
Since the axial stress 0=σ z , the radial and circumferential stresses are
given by r rsσ σ= +  and 2 rsθσ σ= − . The yield criterion (1) is satisfied by
the following substitution

2 sin 3rs kω ϕ=      and     ( )3 cos sin 3kσ ω ϕ ϕ= +         (2)

where 1ω = ±  and ϕ is a function of r and T.  The boundary conditions to
the problem are

                                             0=u      at      0Rr = (3)

and

                                             5 6ϕ π=      at     0rr = (4)

where u is the radial displacement. The condition (4) has been derived from
the original condition 0rσ =  at 0rr =  and Eq. (2).
     It has been shown in [5] that the radius of the elastic-plastic boundary
increases very rapidly with the temperature. In particular, the rise in
temperature at which the entire disc becomes plastic, pT , is small. This
temperature rise is within the range of conventional engineering applications
and, therefore, it is of importance to study the development of fatigue
damage in the case of temperature fields with max pT T≥  (Figure 1) where

maxT  is the constant temperature amplitude. Such a study is performed in the
present paper assuming that max minT T=  (Figure 1).

STRESS ANALYSIS

Monotonic thermal loading of the stress-free disc leads to the initiation of a
plastic zone at the hole and, then, to its growth until the entire disc becomes
plastic [5]. The basic assumption in the present paper, which will be verified
a posteriori, is that the plastic zone starts to develop at the hole in each
temperature cycle and that other plastic zones do not appear in the disc. It
will be seen later that if this assumption is satisfied, the increase in plastic



strain after each cycle can be found from the stress solutions at maxT T=  and

minT T= . Since the entire disc is plastic at these temperatures, substituting
Eq. (2) into the only non-trivial equilibrium equation

( ) 0r rr rθσ σ σ∂ ∂ + − =  and solving this equation along with the boundary
condition (4) gives
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It is clear that ϕ is an increasing function of r in the interval 0 0r r R≤ ≤ .
Therefore, it attains its maximum value mϕ  at 0r R= . It follows from Eq.
(5) that the value of mϕ  is determined by
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It is convenient to use ϕ as a new independent variable in place of r. To this
end it is necessary to express the derivative of any function with respect to r
in terms of its derivative with respect to ϕ. It follows from Eq. (5) that

( )
( )
cos 3sin

3 cos sinr r

ϕ ϕ

ϕϕ ϕ
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=

∂ ∂−
                                   (7)

It is important to note that Eqs. (2) and (5) show that the stress distribution
is independent of the time and, therefore, of the temperature. Of course, this
is a consequence of the fact that the entire disc is plastic. In the process of
loading (and unloading) there is a temperature range such that the entire disc
is elastic and another range such that there are two zones, plastic and elastic.
In these stages of the process the stress field depends on the temperature.
However, these stages do not influence the plastic strain distribution at

maxT T=  and minT T= , as will be seen later.
     It follows from Eq. (2) that the stress increments at the end of each time
interval within which the temperature field varies monotonically are



       4 sin 3rs kς ϕ∆ =      and     ( )2 3 cos sin 3kσ ς ϕ ϕ∆ = +           (8)

where 1 2ς =  corresponds to the interval ( )10 maxt t≤ ≤ , 1ς =  to the intervals

( ) ( )1n min n maxt t t +≤ ≤ , and 1ς = −  to the intervals ( ) ( )n max n mint t t≤ ≤  (Figure 1).
     The stress solution for any instant of the time at which there is an elastic
zone can be obtained without finding the plastic strain distribution in the
plastic zone. This has been demonstrated in [5] for the case of monotonic
loading. Such a solution has been obtained for the problem under
consideration and used to verify the aforementioned assumption. In all cases
considered, it has been found that the assumption is correct. In other words,
within each time interval where the temperature is a monotonic function of
the time the plastic zone starts to develop at the hole and then its radius
increases until the entire disc becomes plastic. Other plastic zones do not
appear within these time intervals.

STRAIN ANALYSIS

The elastic strain increments are obtained from the Duhamel-Neumann law
and the distribution of the stress increments (8). In particular, the increments
of the radial and circumferential strains are given by
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                  (9)

where E is the Young’s modulus, ν is the Poisson’s ratio, α is the thermal
coefficient of linear expansion. These material properties are assumed to be
independent of the temperature. It follows from the associated flow rule that

    p p
r rs sθ θξ ξ=                      (10)

where p
rξ  and p

θξ  are the plastic portions of the strain rate tensor and θs  is
the deviatoric circumferential stress, σσθθ −=s . At small strains,

p p
r r tξ ε= ∂∆ ∂  and p p tθ θξ ε= ∂∆ ∂  where p

rε∆  and p
θε∆  are the plastic strain

increments. It has already been mentioned that the stress field is temperature
independent if the entire disc is plastic. However, Eq. (5) is valid in the



plastic zone even if there is an elastic zone. Therefore, the stress field in the
plastic zone is independent of the temperature in any stage of the process.
Since the ratio θssr  is independent of the time, Eq. (10) may be
immediately integrated, with the use of Eq. (2), to give

( )3 cos sin 2 sinp p
r θε ϕ ϕ ε ϕ∆ − = ∆        (11)

The total strain increments must satisfy the compatibility equation

                                  0r r rθ θε ε ε∆ −∆ − ∂∆ ∂ =                      (12)

Assuming that e p
r r rε ε ε∆ = ∆ + ∆  and e p

θ θ θε ε ε∆ = ∆ + ∆  and using Eqs. (7),
(9) and (11), Eq. (12) can be transformed to the following linear
inhomogeneous differential equation for p

θε∆

       ( )( )3 2 3 cos 3 sin 0p p k Eθ θε ϕ ε ς ϕ ϕ∂∆ ∂ + ∆ + − =                 (13)

Let u∆  be the increment of the radial displacement. Then, the total
increment of the circumferential strain is u rθε∆ = ∆  and it vanishes at

0r R=  due to Eq. (3). Therefore, the boundary condition to Eq. (13) should
be derived from the equation 0e p

θ θε ε∆ + ∆ =  at 0r R=  ( mϕ ϕ= ).
Substituting Eq. (9) into this equation gives

( ) ( )2 2 cos 3 sin 2p
m m maxk E Tθε ς ν ϕ ν ϕ ς α ∆ = − − − −            (14)

at mϕ ϕ= . The minimum value of maxT  at which the entire disc becomes
plastic, pT , corresponds to the condition 0p

θε∆ =  at 0r R= , since, as has
been already mentioned, the plastic zone starts at the hole and expands until
the entire disc becomes plastic. Therefore, Eq. (14) leads to

( ) ( )3 sin 2 cosp m mT k Eα ν ϕ ν ϕ = − −                             (15)

Integrating Eq. (13) with the use of Eq. (14) gives
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    (16)

Using the incompressibility equation for plastic strains,
0p p p

r zθε ε ε∆ + ∆ + ∆ = , and Eq. (11), it is possible to find that
2p p p

r z θε ε ε∆ = ∆ = −∆  at 5 6ϕ π=  (or 0r r= ). In the case under
consideration, the equivalent plastic strain is defined by

( ) ( ) ( ) ( )2 2 2
2 3p p p p

eq r zθε ε ε ε ∆ = ∆ + ∆ + ∆  
. Therefore, p p

eq θε ε∆ = ∆  at

0r r= . It follows from Eq. (16) that
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    (17)

at 0r r= . This equation and Eq. (6) show that the increment p
eqε∆  is the

same after each cycle max min maxT T T→ → . Therefore, the accumulated strain
after any number of cycles can be found from Eq. (17) with no difficulty.

DISCUSSION AND CONCLUSIONS

The closed-form solution found in the paper determines the plastic strain
increment in a disc with a hole subject to cyclic thermal loading. The
solution is valid if max pT T≥  (Figure 1). The value of pT  can be found from

Eqs. (6) and (15). For a mild steel ( 618 10α −= ×  per 0C, 30.635 10k E −= × ,
v = 0.33), these equations give 041 CpT ≈  if 0 0 0r R → . For other
configurations the value of pT  is even smaller. Thus, the range of
applicability of the solution begins at a relatively small amplitude of the
temperature field. Once the distribution of plastic strain is found, different
approaches may be applied for fatigue damage prediction [8] and in many
cases the problem reduces to simple integration. In particular, it has been
shown [8] that in some cases this integration results in the Coffin-Manson
relationship. Since this relationship is a well established engineering



expression for characterizing the total fatigue life [9], it will be used here for
illustrative purpose. To apply this approach, it is only necessary to calculate
the plastic strain amplitude. This amplitude may be found from Eq. (17). For
the mild steel, the plastic strain increment resulting from the temperature
change from minT  to maxT  (or from maxT  to minT ) is illustrated in Figure 2 for
several disc geometries.
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Figure 2: Variation of the plastic strain increment at the hole
edge with the temperature amplitude for several disc geometries.


