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ABSTRACT

In a previous paper [3] a new model to predict the cumulative distribution function of fatigue life during the crack propagatio
stage was described. This problem was there considered as a cumulative damage process following the probabilistic approac
Bogdanoff & Kozin [7], assuming a linear approximation for the random variable “fatigue life" and a truncated uniform
distribution for the crack length. In a second work [4], two corrections to thisalhmodel were discussed: a sewd order
approximation of the fatigue life and an analytical expression for the probability density distribution of the crack leniythdder
from the ones of the initial and final crack lengths. The obtained results showed a much better performance, especially for hi
standard deviations. Finally, a different possibility is studied in this paper: the correction of the initial linear modebbreation

of the Wu's type [18]. This is based on the correction of the abscise of the probability distribution function of the fafieq ey |
computing its "exact" value for the estimated values of the state random variables at the most probable point dgiathlengar
approximation. This approach implies a much lower computational cost than the second order approach cited above, |
demonstrates unfortunately not to be adequate when applied to our case. This is due to the strong non-linearity induced by
exponential function that appears in the Paris law, that defines the fatigue life of metals. This effect is clearly shoven in tt
different examples, especially in those with not very small variances.

INTRODUCTION

Fatigue is known to be seitsve to many different parameters that rarely may be considered as deterministic. Stochastic variation
of the geometry and dimensions, crack length and direction, material properties and load history have a decisive influéece on
fatigue phenomenon, inducing important deviations from the mean or characteristic values of the fatigue life when considered
deterministic. Fatigue is therefore recognised as a random process, which exgntty has started to be analysed with the tools of
the probability theory.

Two different stages are usually considered during the fatigue process: crack nucleation and crack propagation. They asa basec
different micro structural damage mechanisms and usually treated separately and combined afterwards to get the totalféatigue |
Crack nucleation models are based on local strain approadids while crack propagation is based on the concepts of Fracture
Mechanics [6].

In this paper as in other previous works [2][3][5][7]-[9][16]-[18] we study the fatigue crack propagation problem from a
probabilistic point of view. This study is the continuation of the work previously presented in [3], in which fatigue crack
propagation was considered as a cumulative damage problem, discrete in time, using the probabilistic models early developed
Bogdanoff and Kozin[7] (B-models). However, and on the contrary to the results presented in [7], that were obtained from
different series of experimental tests, in [3], the basic stochastic properties of the state variables (displacements, stresses
intensity factor, etc.) were computed by means of the so-called Probabilistic Finite ElememtiotM §PFEM) and the random
properties of the input data (load history, material propertiegjahand final crack length, etc.).

In these B-PFEM models, the initial and final crack lengths, the crack propagation angle, the initial location of the ceack, tr
material parameters and the applied loads are considered as possible random variables. The moments of the fatigue life
computed from the ones of the different variables appearing in the Paris-Erdogan law [14] (material parameters, crack ength ¢
stress intensity factor (SIF)), for each crack length considered along the crack pdthfaiure. From these moments, the
probability transition matrix of the B-model is computed, and using theKéaraws, the Cumulative Distribution Function (CDF)

of the fatigue life is finally obtained.

In [3], different pure mode | examples were described, that allowed us to conclude that the maximum error of the estimgted fati
life was lower than 10% in the design region (the lower failure probability region of the CDF). However, in all the differen
examples there appeared differences of this order. Trying to improve the accuracy of this approach, different corrections wi
studied. The first analysed in [4] was the extension of the truncation order of the Taylor expansion of the fatigue lifmné&anta
quadratic to compute the variance. A second correction, also studied in [4], consisted of the modification of theilgyobab



distribution function (PDF) of the “crack length”. Instead of the truncated uniform distribution, considered in [3], theiaalalyt
expression for the PDF of the crack length increment was obtained from the assumed truncated uniform distributions faakhe init
and final crack lengths and the number of damage levels established to construct the B-model. Thank to these two correctic
much better results both for the mean and standard deviation and for the whole CDF specially around the design region w
obtained, as was clearly shown in the examples included in [4].

A second alternative of correction is introduced and analysed in this paper. Itis based on the most probable point cemeddron
introduced by Wu [17][18], but here extended to include exponential functions as the one appearing in most of the fatigue i
prediction models during the crack propagation stage (i.e. Paris model). The idea is to check if this method increasasdly acc
of the linear model (linear approximation of the variance) keeping low the computational cost of the problem in comparison wi
the previously commented two other corrections. The obtained results show, however, that this type of correction is not good
rapidly varying functions as the exponential. In fact, as ithwe explained, this correction only ensures improved results over one
of the two sides (left or right) of the mean, even in simple random functions. From that we conclude that the best appreash, at
for the moment, is the use of the appropriate PDF of the variables and a second order approach for the computation of
moments.

In the forthcoming sections, we shall briefly review the way in which the B-model and the two first mentioned corrections ar
constructed, assuming known the moments of the different random variables. Also, the random variables of the problem relev
to the fatigue life computation are identified, their relationship with the finite element variables characterised and the
corresponding moments obtained. Section 3 introduces the approach bhased on the Wu's work and its extension to our fati
problem. In section 4 several results for different examples in mode | are shown and compared with the ones obtained in
previous papers.

REVIEW OF B-PFEM CUMULATIVE DAMAGE MODELS

The model here presented is hased on the stochastic approach introduced by Bogdanoff and Kozin [7] and Kozin and Bogdar
[8] to statistically characterise the results obtained from experimental tests for different probabilistic damage phenomen
including fatigue. These, from now on B-models, are based on the theory of Markov chains. Using standard results in Mark
chains, itis possible to write

Py ={pt(1)v K pt(b)} (1)

with the vector defining the probability okaching a certain damage level 1,2b at a certain time f. the initial distribution of the
damage levels at t=0 anB the so-calledprobability transition matrix which, by the first hypothesis, is assumed to be constant
along the process. For a one-step B-moBek of the form
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with p, the probability of remaining in the same state during one DC, grttie probability of advancing to the next level, that is
from the damage state jto j+1, fulfilling> p; 20,p; +q; =1.

Therefore, for the construction of the probability transition matrix the previous computation of the mean and variance of tt
fatigue life for a certain number of damage levels (crack lengths) is needed. These values are computed in this work byf mean:
the Probabilistic Finite Element Mbod and the so-called perturbation approach [10]. This method establishes an approximatior
of the moments of a random function depending on other random variables, by the computation of the same moments of
Taylor expansion of that function about the means of the different variables to which it depends.

In our case, the fatigue life has been defined according to the Paris-Erdogan model [13], that is,

T :I: DiAdka i“
eq
wherea, anda are the initial and final crack lengths respectivedyg is the differential crack length along the crack pathandn
are the Paris material anﬂkeq(a) is the mode I-equivalent stress intensity factor amplitude along the load time history. In order to
provide a higher generality, all of these parameters have been initially considered as possibdenraariables

(3)

If we now discretise equation (3) imscrack growth steps, we can approximate it by
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T ;ﬁb K] le

where A is the increment of crack length during stepD and N are the Paris parametérsKeq the mode I-equivalent stress
intensity factor amplitude andsthe number of steps in which the crack propagation process is divided. If we now establish the

Taylor expansion ofT; up to second order around the means of the different random variaplds, N and K, , we obtain
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where uy is the mean of the corresponding random variakle (A, D, N or K, ), indexi varies from 1 tons meaning the

number of steps (damage levels) and the indigend k vary from 1 to 4 meaning the four random variables considered. The
approximate mean ofr; is obtained by applying the expectation operator to (5). After some algebra and using the expressior

included in Bea [2], we get
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For the computation of the variance af we will use again (3) but only up to order one, that is
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Considering the independence of the different random variables, the variance of (7) mayttenas
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In (6), (8), the moments of the material parameters are assumed to be known, the crack lengdhtfaramage state is assumed to
be a truncated uniform distribution with known mean defined by the means of ttieliand final crack lengths and the number of
damage states. Finally, the moments of the stress intensity factor for each damage state (crack length values neededety accur
integrate the Paris law) have to be evaluated.

Following this approach, several examples were checked [3], concluding that the maximum error of the estimated fatigue life w
lower than 10% in the lower failure probability region of the CDF (design region). However, in all the different examples ther
appeared differences of this order and therefore different corrections were studied to improve those results. The firsororrect
considered in [4] was the extension of the truncation order of the Taylor expansion of the fatigue life from linear to guidrati
compute the variance. Again, the approximated variance of the fatigue life is computed by applying the appropriate opésator to
This variance may be expressed as
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A second correction, also studied in [4], consists of the modification of the pritibabistribution function (PDF) of the “crack
length”. This variable is not independent as assumed in the initial model. On the contrary, this variable depends on thiéitgrobab
distributions of the initial and final crack lengths and the number of steps considered if we assume constant crack leng
increments.

In this section, the different parameters are written in caps to make explicit their character of random variables.



If we still consider truncated uniform distributions for the initial and final crack lengths, that is

%af - u(i.m‘f ,supf) (10)
ga - u(inf, ,sup)

where sup and inf denote the upper and lower bounds @dch radom variable respectively. The first moments for these two
variables are straightforward from the basic properties of probability theory, being
E[ak] _ sunginfk Var[ak] - (sup1<;-i2r1fk )2 (1 1)
With this, and taking into account the expression of the random variable “crack length increment” in terms oftileaimd final
crack length and the number of steps
ar - &
A= (12)
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we can getimmediately the probability distribution function for the crack length increment, (see [4]).

THE WU CORRECTION

Y.T. Wu [18] proposed a method itally efficient to compute CDFs of complex ndom functions, being especially indicated for
those cases where the computation of such function implies a high computational cost, becoming, therefore, the Monte Ca
method clearly inefficient. The Wu's scheme suggests a correction of the CDFs obtained with a linear approximation perturbati
method. This is our case, at least for thetiml model, for the evaluation of the variance of the fatigue life, and the reason of the
study here performed.

We now extend the idea of the Wu's correction to the function “fatigue life” in order to correct the results obtained b thie us
only a linear approximation of this function to compute its variance. We follow therefore the same steps than abov
particularising for our problem. The function we shall consider is the Paris expression of the fatigue life (3) and itstadsocia
linear expansion (7) that we rewrite in the following way
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and, we follow the next steps

1. Foreach valud of the fatigue life used to compute the corresponding CDF we obtain the values of the random variables A, C
N, P associated to the most probable point of the space ndam variables constrained to he assumed fatigue life value.
These values will be denoted &s D, N,, P...

2. We evaluate the expression (4) for these values, getting a new value of the fatigue life dendted by

3. Finally, we correct the CDF of the fatigue life identifying the value corresponding tath the one of the corrected function
associated td. .

Therefore, the only step we have to solve is the first one, that is, the computation of the most probable point for eaol thaue
linear expansion (13). The values of the random variabAesD, N, P are those which maximise the joint probability density
function fpneWhich, assuming independent random variables is only the product of the four independent PR&eshobf the

variables, constrained to the valieof the fatigue life. The problem to solve is therefore formulated as:

maximise foFp OFy OFp
constrained to T =Ty +Ta+Tp +Ty +Tp (15)
or
maximise f O, OF, Op
, T-(Ty+Tp +Ty +T,

constrained to A= (To +To +Ty P)+ Un (16)
noT,
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assuming established the value Affor each damage level. In the following, we consider, as usDaN, P as normally distributed,
and the PDF of the crack length.

In some cases (this is for instance the situation that occurs in the examples presented in section 4) the obtained vAlaes for
outside the allowed domain. In those cases we #x =pu, and compute the rest of variablds, N.and P.maximising fpue

constrained toT =T, +T, +Tp + Ty +Tp . With this, the obtained results are the following
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Once the variables corresponding to the most probable point are computed the rest of the process is straightforward. The r
section shows some of the obtained results.
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RESULTS

In this section, the same examples of Mode | crack propagation in metals fatigue included in [3][4] are discussed. All of the
correspond to the normalised compact tension specimen of the ASTM E647 standard, withwma8thand thicknes=6.

Mode | implies a deterministic null crack propagation angle. The first example considers the data shown in Table 1, with tl
terminology included in [3] and units of the International Standard. In this first case, only the parak ated the initial and final
crack lengths (and therefore the crack length increment) have been considered random.

Figs. 1 and 2 show the complete cumulative probability distribution function and some details, obtained after applyingighe init
and the corrected B-models constructed using 10 different crack lengths (ns=10). These results are compared to the equiva
ones obtained by a standard Monte Carlo simulation, using the explicit expression for the mode | stress intensity factdridefine
the E647 ASTM standard with 400.000 samples. As can be seen, and for bhoth models, the agreement is good for enginee
purposes with a maximum difference between the assumed “exact” results and the ones corresponding itoatr-model of
about 1.000 cycles. This corresponds to relative errors lower than 10%, while the error of the corrected B-FEM model reduces t
maximum of about 5%.

TABLE 1
RANDOM INPUT VARIABLES FOR EXAMPLE 1

RANDOM VAR. MEAN VARIANCE
a: (Truncated Uniform) 3.2 E-3 0.333333 E-4
ai(Truncated Uniform) 21.2 E-3 0.333333 E-§

A (Random) 2.00 E-3 8.230452 E-9
D (Deterministic) L 5432336 E- 0.0

N (Gaussian) 3.6000143 9.98575 E-5
P (Deterministic) 5850.0 0.0

Results predicted by the initial B-model are conservative while the ones qoonaking to the corrected B-model are not. However,
this is not a common feature for all the different examples studied and has to be considered as a special situation fog tfis ty
example.

Finally, the shapes of the three distributions are very similar, appearing as translated one respect to each other. toriatant
translation of the abscise seems to be able of reducing strongly the computed error in the lower and medium probability parts
the curves and especially for the corrected model. This again seems to recommend a solution of the Wu's type as previot
commented.

In the same figure, the curve obtained after applying the Wu's correction to the linear corrected model (corrected PD Faxkthe ¢
length variable but linear approximation of the variance) is also shown. As the others, the result is very accurate beipg clea
better than the initial model and very close to the corrected model which makes usrdew if the obtained improvement is
essentially due to the first correction, that is, the proper definition of the PDF of the crack length. This is clarifiegl nexh
example.
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Figure 1. Comparison between the Monte Carlo simulation and the B-model results in example 1
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Figure 2. Somedetails (lower and upper parts) of the Fig. 1

In this first example, it is very difficult to distinguish between the improvement due to the modification of the PDF ofattie cr
length and the one associated to the increment of the truncation order for the computation of the variance. In fact, ihiestse
order approximation of the variance but keeping the corrected PDF of the crack length, the obtained curve is indistinguishal
from the corrected one in Fig. 1. This is not surprising since a linear approximation of the variance is enough to get a go
accuracy when the standard deviations of thedram variables are small.

This goodaccuracy of the iitial model is broken when higher variances for the basicdam variables are considered. This may
be seen in Fig. 3 which corresponds to the cumulative distribution functions computed by the same three matddI8 {model,
corrected B-model and Monte Carlo simulation) for the same problem but with the random variables defined in Table 2. In th
figure the CDF corresponding to the model with only the first correction included, that is linear approximation of the vamahce
corrected PDF of the crack length are also shown.

TABLE 2
RANDOM INPUT VARIABLES FOR EXAMPLE 2
RANDOM VAR. MEAN VARIANCE
a: (Truncated Uniform) 3.2e-3 0.333333 e-6
ai(Truncated Uniform) 21.2 -3 0.333333 e-6
A (Random) 2.00e-3 8.230452e-9
D (Deterministic) 1.54236 e-33 0.0
N (Gaussian) 3.6000143 1.99203e-3
P (Deterministic) 5850.0 0.0

As it can be noticed, the variance of the Paris parameter N is much higher and the accuracy oitiieBHmodel decreases
strongly. This is due not only to the inability of the linear approximation of the variance to approximate the behaviourcofibe

far from the mean well enough, but also to the poor approximation of the mean due to the bad crack length PDF employed. T
effect also appears in the corrected B-model but very much reduced, specially in the lower part of the CDF (the one with low
failure probabilities) which usually corrpsnds to the design region and therefore the most interesting for the designer. The
second order approximation of the variance only gives, in this problem, a smaitianal improvement. Of course, this aspect
becomes more important for higher variances.

With respect to the Wu correction, the corresponding CDF is also compared in Fig. 4 and the details of the same curves showr
Fig. 5, with the initial, the corrected B-model and the Monte Carlo simulation. From these results we can deduce simil;
conclusions than the ones cited for example 1, that is, the Wu correction implies an important improvement with respect to t



initial model. However, this is due to the better specification of the PDF of the crack length, not having a significantemgrtv
when compare not only to the complete corrected model but also to the linear model with correction on the crack length BDF. T
is especially true in the lower part of the curve as can be seen in Fig. 5a, where we are more interested. This behawippeartso
when correcting simpler random functions, so we can conclude that the Wu's correction is useful only for the upper regeon of t|
random variable. Specifically for our case, it is not appropriate mainly due to the strong non-linearity of the fatiguediierin
terms of the different parameters and, in particular, of the exponent N, which is the most important variable in this example.
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CONCLUSIONS

In the present work the probabilistic approach earlieradrced in Bea et gR][3][4], based on the application of the Bogdanoff

& Kozin B-models for cumulative damage to the fatigue crack propagation problem in metals has been briefly reviewed. Th
method allows us to compute the cumulative distribution function of the fatigue life during the crack propagation stage. Tt
transition probability matrix of the B-model is constructed from the application of the expectation and variance operab@s to t
Taylor expansion of the Paris-Erdogan fatigue life expression, while the moments of the different random variables are comput
from the corresponding input data, from the assumed proitghdistributions of the initial and final crack lengths and from the
results of a set of probabilistic finite element problems &ach of the iitially established damage (crack lengths ) levels. The
initial crack length is usually identified with the threshold of thecuracy of the available crack detection equipment, while the
final crack length is considered as the established failure.

Besides the external load, the Paris-Erdogan material param&easid n, the initial and final crack lengths, the initial crack
propagation angle, and the initial location of the crack have been considered as possiitemravariables. Finally, the elastic



material parameters may also be stochastic as some of the geometric properties (thickness of the specimen) that are ieated ir
the PFE modulus. All of these variables have heen considered as Gaussian, although the extension to other situation:
straightforward with no more that using a change of variables from the assumed probability distribution to the equivalendrGauss
(see Papoulis [12], for instance).

The accuracy of the obtained failure prolilay distributions proves a god performance, when compare to an equivalent analysis
performed with a Monte Carlo simulation approach or with the results obtained from experimental tests (see B[@3)eThls is
especially true for problems with small variances (relative errors of about 5-10% for the fatigue life). However, for highe
variances some corrections have to be included. Some of them have been already discussed in [4].

Other possibility has been imtduced here, the application of a correction to the abscise in a similar fashion to the one proposed &
Wu [18], reducing importantly the associated computational cost when compared to other possible improvements. This correcti
although leads to a good behaviour for the final region of the CDF (above the mean), provides not very good results ingthe des
region (low failure probabilities), implying that ih®uld be discarded for design purposes in our problem. This is probably due to
the strong non-linearity associated to the fatigue life Paris expression, especially in relation to the exponential paftoétibe.
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