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ABSTRACT

This paper presents an efficient numerical procedure for mixed mode fracture of quasibrittle materials. The
model is based on the cohesive crack approach, and extends it from mode I to mixed mode (modes I and II) of
fracture. In contrast to more sophisticated models, this method offers a major advantage: a diminution in the
number of parameters, all of which have a clear physical meaning. The numerical results agree quite well with
two sets of experiments of mixed mode fracture of concrete beams; one by Arrea and Ingraffea and the other
from a nonproportional loading by the authors.

INTRODUCTION

Considerable effort has been devoted in recent years to the development of numerical models to simulate the
fracture behaviour of quasi-brittle materials, such as mortar, concrete, rock or bricks, used in civil engineering
structures. Even in two dimensions, the modelling of the fracture behavior of these materials is a complex
problem. Traditionally, the numerical methods based on the FEM are classified in two groups [1]: "smeared
crack” and "discrete crack "; although some authors include a third group: the "lattice approach" [2].

In the smeared crack approach the fracture is represented in a smeared manner; an infinite number of parallel
cracks of infinitely small opening are (theoretically) distributed (smeared) over the finite element [3]. The cracks
are usually modelled on a fixed finite element mesh. Their propagation is simulated by the reduction of the
stiffness and the strength of the material. The constitutive laws, defined by stress-strain relations, are non-linear
and show a strain softening. This approach was pioneered by [4 to 9] and more elaborated models have also been
proposed [10, 11]. However, the strain softening introduces some difficulties in the analysis [12 to 13], which
have been tackled [14 to 16], but there is no general solution of the problem.

The discrete approach is preferred when there is one crack, or a finite number of cracks, in the structure. The
cohesive crack model, developed by Hillerborg and coworkers [17] for mode I fracture of concrete, was shown
to be very efficient to model the fracture process of quasi-brittle materials. It has been extended to mixed mode
fracture (modes I and II) and incorporated into finite element codes [18 to 20], as well as in boundary element
codes [21]. One of  the difficulties with these codes is that  they require an input of material properties that are
difficult to evaluate, such as the fracture energy and the softening function in mode II.

As shown by [22, 23] for quasibrittle materials, under global mixed mode loading there is an important local
mixed mode when the crack starts from the notch, but when the crack is growing in a stable manner under global



mixed mode loading  the local mode I growth is predominant. This leads to an easier formulation of the mixed
mode fracture models, with fewer parameters. This work presents a numerical model for mixed mode fracture
based on this idea, with the advantage that it only requires the input of material properties easy to measure and
with fully physical meaning. The model has been incorporated in a commercial Finite Element Method code
(ABAQUS®) and verified with a set of experimental records of mixed loading in concrete [22]. The numerical
model predicts different crack paths and the experimental records of the load versus the displacement of several
control points, for geometrically similar specimens of three sizes of the test beams. Another set of experimental
data was used to verify the procedure: [24].

THE COHESIVE CRACK MODEL

The cohesive crack model, called fictitious crack model by Hillerborg and co-workers, has been used
successfully in the analysis of the fracture of concrete, rock and cement based materials since its proposal [17].
Part of this success is due to its simplicity and physical meaning. A detailed review of this model is found in [3].
The softening function, σ = f(w), is the main ingredient of the cohesive crack model. This function, a material
property, relates the stress σ acting across the crack faces to the corresponding crack opening w (Figure 1). For
mode I opening, the stress transferred, σ, is normal to the crack faces.

Two properties of the softening curve are most important: the tensile strength, f't, and the cohesive fracture
energy, GF. The tensile strength is the stress at which the crack is created and starts to open (f(0)= f't). The
cohesive fracture energy, GF, also called specific fracture energy, is the external energy supply required to create
a full unit surface area of a cohesive crack, and coincides with the area under the softening function. The tensile
strength and the specific fracture energy are material properties and may be measured experimentally in
accordance with ASTM C 496 and RILEM 50-FMC. Many softening curves have been developed to model the
experimental fracture behaviour of concrete in tension [3]. The bilinear curves are accepted as reasonable
approximations of the softening curve for concrete.

Figure 1: Cohesive crack and softening curve for mode I fracture of concrete

NUMERICAL PROCEDURE FOR MIXED MODE FRACTURE

The numerical simulation of the mixed mode fracture includes two main stages: 1) calculation of the crack path,
and 2) incorporation of the cohesive model into the crack path. Linear Elastic Fracture Mechanics has proved
its worth to predict the crack path [22, 23], which here is calculated according to the maximum tangential stress
criterion [26]. Numerical details can be found in [23].

Cracking surface for mixed mode fracture
In a mixed mode (I and II) fracture, the interaction between normal stress, σ, and tangential stress, τ, should be
taken into account. It is assumed that the crack grows when the combination of normal stresses, σ, and tangential
stresses, τ, reaches a cracking surface F(σ,τ) = 0, like a yield surface in classical plasticity. This work assumes

the following hyperbolic expression [18]:

F = τ 2 − 2ctanφ f ft − σ( )− tan2 φ f σ 2 − ft
2( ) (1)



where: c is the cohesion, φf the friction angle  and ft the tensile strength.

In accordance  with the cohesive approach [17], the cracking surface evolves with the opening of the crack
following softening curves of cohesion and tensile strength, defined from the softening parameter uieff, which is
the integral norm of the vector of inelastic relative displacements between the crack faces,iu&, obtained by
decomposition of the displacement vector, u, into an elastic part, ue, and an inelastic part, ui. It is expressed:
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Figure 2 shows the softening curves.

Figure 2: Softening curves: a) tensile strength, b) cohesion.
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F  are the specific fracture energy under modes I and IIa (mode II under large normal confinement);
s1c, ω1c, s1σ and ω1σ, are the coordinates of the kink point in the softening curves. Figure 3 shows the cracking
surface and its evolution.

The model was used to reproduce the mixed mode fracture tests of concrete developed by Arrea and Ingraffea
[24 ] and by the authors [22]. A detailed numerical study of the normal and tangential stress evolution along the
crack path during the tests showed that under a global mixed mode the local mode I was predominant.

If local mode I is predominant, the tensile strength and tensile stress are very similar and it may be assumed that
σ ≈ ft  , and then σ + ft = 2 ft . Including this in equation (1):

F = τ 2 − 2 tanφ f c − ft tanφ f( ) ft −σ( ) (2)

The evolution of the cracking surface depends on the softening curves of cohesion and tensile strength. It is
assumed that these curves evolve in a similar manner, showing proportional softening curves. There is no
experimental evidence to the contrary. Mathematically it is expressed as follow: ft = ft uieff( ), c = c uieff( ), and

c

ft
=

c uieff( )
ft uieff( )= α, α ∈ℜ > 0 (3)



Figure 3: Cracking surface and its evolution

where α is positive real constant. Since the friction angle, φf, may be assumed constant, the following constant
is defined:

 C = 2tanφ f α − tanφ f( ) (4)

and, finally the cracking surface is expressed as:

F = τ 2 − Cft ft − σ( ) (5)

Two major advantages are supplied by this equation: reduction of the parameters and simplicity. Figure 4
compares equations (1) and (5). Under predominant tension stresses the curves are practically equal, while under
tangential stresses are quite different, but this behavior was no detected in the studied tests [22, 24].

Figure 4: Comparison of parabolic and hyperbolic models of cracking surface.

Flow rule
In conjunction with equation (5) a flow rule is necessary to define the plastic displacements.  For non-associative
plasticity the flow rule is obtained from a potential function: 
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where p
ijε&  is the incremental plastic deformation, λ& is a positive constant usually referred to as “plastic strain-

rate multiplier”, g is the potential function and σ ij  the component ij  of the stress. Based on equation (6) the

evolution of the stresses from a point of the cracking surface is given by:

( )buE λσ &&−= (7)

where E is the stiffness matrix, uE&the elastic predictor and bEλ& the inelastic corrector. As shown in Figure 5,
when mode I is predominant, the potential is not defined, and in this work the return to the origin (σ=0, τ=0)
direction is assumed for the plastic correction, and bEλ& is proportional to σ. Since λ& is a proportional factor,
the direction of the plastic deformation is defined as:

Eb = σ ⇒ b = E−1σ (8)

In this manner the flow rule is defined . It is worth noting that the b vector depends exclusively on the stresses
and not on the history of displacements.

Integration of the rate equations
If we begin at the n step, where the cracking surface equation is satisfied F σn, τn( )= 0, we pass to the n+1 step:

( )buE λσσσσ && −+=+=+ nnn 1 (9)

substituting b by expression (8) particularized for σn+1, we obtain:
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where λ& is the unknown quantity, which is found since the cracking surface equation should be satisfied in the
n+1 step:

Fn+1 = τn+1
2 − Cft ft − σn+1( )= 0 (11)

Since the value of ft  is no constant and depends on the plastic displacements an iterative process is necessary.

Incorporation into a finite element code
The proposed model was incorporated into a finite element code by interface elements. The commercial code
was ABAQUS® and the interface elements were defined by a user subroutine. The interface elements were
incorporated into the crack path, previously obtained by a linear fracture elastic calculation. The FRANC [27]
finite element code was used to calculate the crack path.

EXPERIMENTAL VERIFICATION

Comparison with the authors’ experimental results
The proposed model was checked with two sets of experimental data of mixed mode fracture tests of
concrete developed by the authors [22]. The two sets of the testing procedure were developed under

proportional and nonproportional loading for two different families of crack paths. Three sizes of quasi
homotetic beams were tested. Figure 5 shows the geometry, forces and boundary conditions of the tests. The



material properties were:


