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ABSTRACT

The problem of long-term fracturing of three-dimensional fiber reinforced aging viscoelastic
composite with plane disk-shaped macrocrack under stationary loading is considered. The matrix fiber
composite has hexagonal symmetry structure and consists of elastic isotropic fibers and aging viscoelastic
isotropic matrix. The crack is oriented in the plane of isotropy. Only tensile loads normal to the plane of
the crack are considered. The material is modeled as an anisotropic homogeneous linearly-viscoelastic
medium with some averaged characteristics. The process zone in front of the crack tip is modeled as a
Dugdale zone with a time-dependent stress. As a time operator of the matrix is assumed Maslov-
Arutyunyan integral operator. The problem is solved on the basis of the Volterra principle and the long-
term fracturing of viscoelastic bodies theory. The solution is derived to the nonlinear integral equation of
crack growth. The irrational function of integral operators obtained in the solution is expended into a
continued fraction of operators. As the continued fractions quickly converge towards its function only a
few fractions is retained in the expansion. Numerical calculation of the nonlinear integral equations of
crack growth is performed for specific material. Diagrams of kinetic curves and the service life of cracked
body for different volume values of fibers and matrix are represented.

INTRODUCTION

In many cases the application of the Volterra principle to the solution of a quasistatic lineary-
viscoelastic problems for homogeneous anisotropic materials comes down to the problem of representing
irrational functions of the Volterra integral operators in the standard convolution-type form. Traditionally
solution of the problem by expanding the function into a formal Tailor’s row has a lot of complicated
proceedures in practice. The solution of the problem by using different approximation schemes [1,2] has a
lot of restrictions.

Alternative solution of the problem by expanding the function of integral operators into a
continued fraction of operators on the bases of Thiele’s formula was suggested in works [1,3]. By means
of this method in works [1, 4, 5] were obtained solutions of long-term fracturing problems of lineary-
viscoelastic materials with the different anisotropy properties.
But this method can not be applied to the non-different integral operators, which describe aging properties
of materials, if the resolvent operator is not known.



In this paper, the operator with Maslov-Arutyunyan’s kernel is assumed for the constitutive
equation of an aging material, as the kernel of the resolvent operator was found by N.Kh. Arutyunyan [1].

PROBLEM FORMULATION

Let us consider internal plane disk-shaped mode I macrocrack of radius �O  in a three-dimensional
fiber reinforced aging viscoelastic composite under stationary tensile stress S  applied in the infinity. The
crack is lying in the plane of isotropy ��[[  and between the layers of reinforced fibers.

The material of composite matrix is assumed as a homogeneous aging viscoelastic material and the
composite reinforced fibers as a homogeneous elastic material.

Let us take Volterra integral operator 9λ  with Maslov-Arutyunyan’s kernel [6] to define the
constitutive equations of the aging viscoelastic material:
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The kernel of the resolvent operator ��λ@ , which satisfy the equation

( ) ��� −λ+=λλ− @> 9@ , (3)

was found by N.Kh. Arutyunyan [6] and has the following form
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The composite material is assumed to be transversally-isotropic homogeneous linearly-viscoelastic
aging medium with some averaged characteristics, and a crack to be on the symmetry planes of the
anisotropy during all time of propagation.

As a crack model is applied here the modified Leonov-Panasyuk-Dugdale model [1,7] with the
constant length of the process zone (FRQVWG = ).

As a criterion of fracture is assumed criterion of critical opening displacement (COD)

( ) ( ) &WOU
WU δ=δ =� . (5)

The parameters of fracture model G  and &δ  are assumed not to vary with age of material.

AVERAGED COMPOSITE CHARACTERISTICS

Averaged composite characteristics are determined by formula, which is obtained in work [8]:
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Here, 1c  is specific volume of all reinforcing fibers, 
��
F�F −=  is specific volume of the matrix, 14c  is

specific volume of fibers that is perpendicular to the plane of isotropy ��[[ , superscript (1) denots the
material of reinforcing fibers and superscript (2) denotes the matrix material.

Composite viscoelastic characteristics can be obtained from Eqn. 6,7, and 8 after replacing elastic
constants by corresponding time operators.

As the fiber material is elastic, the time operators ���
3  and ���ν  may be considered as constants.

Let’s assume the matrix time operator ���ν  is constant, and write the time operator ���
3  in form

�������� λλ−= @3 �( �� . (9)



Here, ���(γ=λ , and ��λλ@  is the Volterra integral operator with the kernel from Eqn. 4.

If the composite reinforcing fibers are tough enough in comparison with matrix, the following time
operators can be considered as constants

�� (≈3 , �� (≈3 , ���� ν≈ν , ���� ν≈ν .    (10)

After substitution of Eqn. 9 in Eqn. 8,7 the time operator ��5  can be expressed in the following
form
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Here, Lα  and Lβ  are coefficients that are determined during the algebraic transformations of resolvent

operators �� Lλ@ .

So, only one time operator ��5  describes composite viscoelastic properties.

CRACK OPENING EQUATION

According to the Volterra principle, the crack opening (the double normal displacement of one
bank) in the lineary-viscoelastic material is determined by equation of crack opening in elastic material, in
which the elastic constants must be replaced by the corresponding time operators of the viscoelastic
material. From here and [4], it follows that the crack opening can be expressed by
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Using the COD criterion (see Eqn. 5), one can derive from Eqn. 12:

( ) ( ) &LM WOWOJ δ=⋅ �����3B , (15)

where ��WO  is the sought function. This is the nonlinear integral equation of crack growth in the

viscoelastic aging material.

To efficiently solve Eqn. 15 we need to represent operator ( )LM3B  in the standard convolution-type

form
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Here, �7  and ��� τWΠ  should be expressed in terms of ( )LM3B .

On the bases of square root function expansion into a continued fraction
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one can expand the function of integral operators into a continued fraction of operators as follows
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So, for operator ( )LM3B  one can derive from Eqn. (14):

( ) @> ��( LM ∑ = λγ+≈ 1
�L LL
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Usually, continued fraction of operator ( )LM3B  quickly converge towards ( )LM3B  and, therefore, the

number 0 in Eqn. (18) can be taken not more than �0 ≤ .

From Eqn. 19 it follows that the kernel of operator ( )LM3B  in Eqn. 16 can be written as

∑ = λτγ=τ 1
�L LL W5W �������Π        (20)

in the convolution-type form.

SUBCRITICAL CRACK GROWTH

The subcritical crack growth can be divided into three periods [1,7], namely:
incubation period during which the crack only opens but does not grow;
transition period where the growth of the crack starts; and
the main period of slow growth of the crack up to unstable growth.

Incubation Period
Based on Eqns. 15, 16, and 20, for macrocracks when OG << , the equation for determination of

incubation period duration ∗W  in terms of stress intensity factors has the form

∫
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where π= ��, OS�. , ��� τWΠ  is the kernel of integral operator ( )LM3B .

The safe value of the stress intensity factor [1,7] ,V, .. =  is determined from Eqn. 21 by tending
∞→∗W .



Transition Period
Based on Eqns. 15,16, and 20 and approximation of crack opening in the process zone [9], the

equation of crack growth during this period can be written as
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where �� �����OQ����� V��V���VV�V) −+−−+−= .

The end of transition period �W  is evaluated from Eqn 22 by the condition when the length attains the

value, GOWO �� +=�� .

Main Period
Due to the Eqns. 15,16, and 20, the equation of the crack growth during the main period has the

form:
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where t′  is determined by equation ( ) ( ) dtltl =′− .

At the time �W , when the crack achieves the critical length ∗= OWO � �� , the dynamic growth of the

crack starts.
As the time of dynamic growth is very small, the service life 7∆  of the cracked aging viscoelastic

material is determines by expression

��W7 τ−=∆ .     (24)

AN EXAMPLE

Let’s consider a specific example with the following characteristics of materials:

Reinforcing fibers (fiberglass) – 3D��� ��� ����( ⋅= , ��� ��� =ν ;

Matrix (concrete) – 3D�� ��� ���( ⋅= , ����� ��� =ν , ���
� ������ÿ

−−⋅= 3D� ,
���

� ������$ −− ⋅⋅= 3DGD\� , �GD\���� −=γ � .

Table 1 shows how converges continued fraction of operator ( )LM3B (see Eqn.19) in the space of

positive functions 3  ( ��F� �= , ��F�� �= ).

TABLE 1

CONVERGENCE OF CONTINUED FRACTION OF OPERATOR ( )LM3B

( ) ( )LMLM 3B3B
3

τ1, day M=1 M=2 M=3 M=4 M=10

7 1.6303 1.515 1.5319 1.5295 1.5298

21 1.4498 1.3738 1.3845 1.3830 1.3831

120 1.3755 1.3165 1.3245 1.3234 1.3235



In the numerical calculations of the specific example it accepts �0 = .
Figure 1 shows numerical calculation of the service life of cracked aging composite vs. specific

volume of fibers that lay in the plane of isotropy ��� FF −=ξ  for different ages of material (1-

GD\V�� =τ , 2- GD\V��� =τ , 3- GD\V���� =τ ). The calculation is performed for the following data:

��F�� �= , ���OG � �� = , ��SS �� =∗ , were ,F� .OS� =π∗ � .

Figure 1: The diagram of service life vs. the specific volume of reinforcing fibers.

Figure 2 shows numerical calculation of kinetic curves of crack growth for different ages of
material (1- GD\V�� =τ , 2- GD\V��� =τ , 3- GD\V���� =τ ). The calculation is performed for the same
data as in Figure 1 and ��F� �= .

Figure 2: The diagram of kinetic curves.
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