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ABSTRACT

This paper presents a method to predict the failure load of U-notched bend specimens of a high strength, low
toughness steel used in civil engineering. The prediction is based on the modelling of fracture as a cohesive
cracking process. An experimental programme of three and four point bend fracture tests was performed to
assess the method. The theoretical predictions were obtained by a finite element simulation of the tests,
where a conventional elastoplastic constitutive equation and a two parameter softening curve were
respectively used for the bulk material and for the cohesive zone. One of the two parameters, the fracture
energy, was measured in independent fracture toughness tests involving precracked specimens, while the
other, the cohesive strength, was determined by adjusting the numerically predicted load failure to the
experimental value for one of the eight notch geometries examined. For the remaining seven, good
agreement was found between the numerical and experimental failure loads.

INTRODUCTION

Some steels used in civil engineering are materials with an extremely high yield strength (above 1000 MPa)
and a poor fracture toughness in contrast (below 50 MPa m1/2) [1]. This lack of toughness generally involves
low damage tolerance and entails a risk to the structural integrity that should be evaluated. When damage
consists of the existence of cracks weakening a structural member made from these steels, the remaining
bearing capacity can be predicted by means of well-known Fracture Mechanics theories, but there is no
equivalent method to predict the failure load of members containing notches. This work explores the
cohesive zone model as a tool to predict the failure load in such cases. It is a general approach that has been
used to explain fracture from notches in PMMA [2].

In the cohesive zone model, fracture is viewed as a cracking process in which the cracked area is able to
transmit stress as a function of the distance separating its faces. This function (the softening curve) is a material
property and becomes null for a critical separation, marking the difference between the cohesive and non
cohesive cracking. The softening curves considered in this work are the simplest ones, since they are defined
by two material constants. Given that load failure predictions cannot be analytically derived from the cohesive
model, it is implemented as an added feature of a finite element computer programme, so that the failure load
of a number of notched bend specimens is numerically predicted. These predictions are compared with the
values measured in fracture tests of specimens equal to those modelled in the calculations.

EXPERIMENTAL PROGRAMME

The material investigated in this work was a commercial, hot formed and air cooled eutectoid steel whose
microstructure was formed by laminated pearlite colonies and round carbide. The chemical composition is



given in Table 1. The steel was supplied in 36-mm diameter bars and the specimens for all the mechanical
tests were machined from the central part of the bars, with the largest dimension parallel to the bar axis.

The stress-strain curve shown in Fig. 1 was obtained from tensile and compressive testing. The yield tensile
strength is approximately twice the yield compressive strength, the Bauschinger effect being very
pronounced. Consequently, the strain hardening capacity in tension and compression is very different, as Fig
1 shows. The mechanical properties obtained from the stress-strain curve are given in Table 1. This table
also includes the fracture toughness of the steel, measured according to ASTM E 399 [3] standard by using
fatigue precracked bend specimens 16 mm thick.
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Figure 1: Tensile and compressive stress-strain curves of the tested steel.

TABLE 1
CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF THE TESTED STEEL

C 0.65 % Elastic modulus 208 GPa
S 0.70 % Tensile yield strength 1143 MPa

Mn 1.20 % Compressive yield strength  625 MPa
P 0.014 % Tensile strength 1285 MPa
S 0.018 % Maximum uniform elongation 6.7 %
V 0.25 % Fracture toughness 33 MPam1/2

Figure 2: Notch geometries and bending devices of the two test series.

The fracture tests of notched specimens were performed by flexural loading of rectangular beams (7 mm
thick, 14 mm wide and 60 mm long) containing U notches 7 mm deep at the middle cross section (Fig.2).
The two test series included the same four notch radii (nominally, 0.1, 0.2, 0.5 and 1 mm) but differes in the



bending device. Four specimens nominally identical were tested for each test of the two series. The bending
device of Series A was the three-point one of Fig 2, but in Series B it was changed to the four-point one of
Fig 2.

The specimens were notched by two different procedures: electroerosion for the notch radii of 0.5 and 1 mm,
and mechanical cutting by a diamond wire for the notch radii of 0.1 and 0.2 mm. Since the cohesive model is
very sensitive to the notch geometry [2], the depth and specially the radius of each notch were carefully
measured before testing by means of a profile projector at low magnification. Table 2 gives the mean values
and the scatter for the four specimens nominally of the same geometry.

TABLE 2
MEASURED DIMENSIONS OF THE NOTCHED SPECIMENS

Series A Series B

R (mm) a (mm) R (mm) a (mm)

0.101±0.001
0.171±0.006
0.505±0.002
1.00±0.01

7.0±0.3
7.0±0.2

6.96±0.04
6.96±0.06

0.106±0.004
0.171±0.005
0.498±0.002
1.000±0.002

6.84±0.09
7.09±0.06
6.98±0.01
7.00±0.03

0

5

10

15

20

0 0.2 0.4 0.6 0.8

R = 0.1 mm

R = 0.2 mm

R = 0.5 mm

R = 1   mm

LO
A

D
 (

kN
)

CMOD(mm)

Final Fracture

Figure 3: Load-CMOD curves obtained in the fracture tests of notched specimens (Series A).

TABLE 3
MEASURED FAILURE LOAD OF THE TESTED NOTCHED SPECIMENS

Series A Series B

Notch radius Failure load Notch radius Failure load

0.1 mm
0.2 mm
0.5 mm
1 mm

8.9±0.1 kN
7.1±0.2 kN
5.1±1.3 kN
5.1±1.0 kN

0.1 mm
0.2 mm
0.5 mm
1 mm

16.90±0.06 kN
14.20±0.03 kN
11.1±1.6 kN
9.8±2.1 kN

The tests were made by imposing a constant crack mouth opening displacement rate (CMOD control), which
was measured by a strain gauge extensometer attached to the face of the specimen where the notch ended.



The Load-CMOD curve was recorded up to final fracture in each test. Fig. 3 and 4 show these curves for one
of the four repeated tests and Table 3 gives the measured failure load with the experimental scatter.
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Figure 4: Load-CMOD curves obtained in the fracture tests of notched specimens (Series B).

THEORETICAL BACKGROUND

The cohesive zone model was introduced in 1960s by Barenblatt [4] and Dugdale [5] to model the material
response to the crack elastic stress singularity, but the current formulation is due to Hillerbourg [6] who
generalized the model to account for the fracture of uncracked solids. Generally, the cohesive crack theory is
applied to quasi-fragile materials such as concrete or ceramics [7], but recently it has been extended to
polymeric and metallic materials such as PMMA [2] and aluminium [8].

In this theory, fracture is viewed as a cracking process that initiates at the point where the maximum
principal stress σΙ reaches the cohesive strength ft, a material constant. This crack consists of a displacement
discontinuity surface inside the material that propagates perpendicularly to the direction of σΙ .The cracked
area is able to transmit stress between its faces as a function σ = f(w) of the normal displacement
discontinuity w. This occurs up to a critical value wc from which the transmitted stress vanishes, the cracked
area able to transmit stress is the cohesive crack, and the cracking process transforms from cohesive into real
for normal displacement discontinuities greater than wc.

The function

σ = f(w) (1)

is a material property called the softening curve that becomes null for w > wc and whose value at the origin
is ft (f(0) = ft). The area enclosed under the softening curve:

GF = f(w)dw
0

w c

∫ (2)

is the fracture energy GF, since it coincides with the value of the energy release rate G that produces the
brittle fracture of a cracked solid of the cohesive material [9]. The softening curves assumed in this work to
predict failure loads are the rectangular functions f(w) = f(0) = ft for  0 •  w < wc and f(w) = 0 for w > wc.
Despite being the simplest ones they have been satisfactorily used for other materials [2, 8]. These curves are
determined by the two values that represent the sides of the rectangle, the cohesive strength ft and the critical
displacement wc, or alternatively by one of the sides and the area, namely, the cohesive strength ft and the



fracture energy GF. The value of GF can be experimentally found from a plain strain fracture toughness test
of the cohesive material, where the brittle fracture of a precracked specimen occurs. The plain strain fracture
toughness KIc, the elastic modulus E, the Poisson´s ratio ν and the fracture energy GF can be related with the
aid of the J integral when calculated at fracture along a contour surrounding the crack tip and not passing
through the cohesive crack [9]. The relationship is:

GF = (1−ν2)
KIc

2

E (3)

It has been shown [10] that this brittle behaviour of a cohesive material in a fracture toughness test requires
specimens with all the dimensions roughly one order of magnitude greater than a characteristic length of the
material, lch, defined as:

l ch = EGF

ft
2 (4)

NUMERICAL PREDICTIONS

With a few exceptions, the cohesive model does not allow the analytical determination of the stress and
strain field, so in practice, finite element calculations incorporating the cohesive cracking are necessary to
predict failure loads on the basis of this theory. For the U–notched specimens of the steel tested in this work,
a finite element commercial programme Abaqus [11] was used, with special elements in the ligament of the
notch to allow the cohesive cracking. The loading and geometrical mirror symmetry facilitates the task of
complementing the finite element calculation method with the cohesive cracking, since the cracking path is
known to follow the symmetry plane.

Figure 5: Type of finite element mesh used to apply the cohesive model to bend U–notched specimens.

The type of finite element mesh employed in the calculations is depicted in Fig 5. It was only necessary to
construct the mesh of a half of each specimen due to the mirror symmetry. The elements used for the bulk
material were conventional, linear, plane strain elements with four integration points. The size of the
elements ranged from 5 µm at the notch root to 0.4 mm far from the notch. The constitutive equation
adopted for the bulk material was that of a conventional elastic-plastic material obeying the Von Mises yield
criterion and having the strain hardening and the Bauschinger effect shown by the stress-strain curve of Fig 1.

The special elements used for reproducing the cohesive cracking were one-dimensional with two nodes and
no initial length. They were placed along the specimen ligament, at the symmetry plane, with a node joined
to the plane but free to move on it, and the other shared with the bulk elements of the contiguous layer. A
user material subroutine was specifically developed to integrate the special elements into the general finite
element mesh. The length of the special elements can increase, giving rise to an attractive force between the
nodes which depends on the element length. This dependence, the constitutive equation of the especial



elements, was obtained from the softening curve by transforming the cohesive stresses into nodal forces of
the special elements by the usual procedure in the finite element method. The CMOD control of the tests was
reproduced in the numerical calculations by using the non-linear algorithm that allows the length of the arc
force-cohesive displacement curve to be controlled [12] at each loading step.
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Figure 6: Softening curve of the tested steel.
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Figure 7: Determination of the cohesive strength for the tested steel.

The softening curve finally used is that shown in Fig. 6. Since Abaqus does not allow a strictly rectangular
curve, a slightly trapezoidal rather than rectangular curve was used in fact, but the difference was
meaningless. This curve was derived from the fracture energy and the cohesive strength of the tested steel
(the area and the height of the rectangle). The fracture energy is 5.00 kJ/m2, according to Eq (3) and the data
given in Table 1, but no formula relating the cohesive strength ft to other mechanical properties is available.
It was determined from an experimental failure load, that of the specimens of Series A with the largest notch
radius. The numerical failure load for this bending device and notch radius was calculated by making the
cohesive strength range from 2100 MPa to 2500 MPa. This failure load is plotted in Fig 7 as a function of
the cohesive strength. The numerical failure load is seen to coincide with the experimental one at a cohesive
strength of 2370 MPa, so this value was adopted for the tested steel.



Once the softening curve was found, the finite element programme with cohesive cracking was applied to
the remaining seven notch configurations of Series A and B. To account for the deviation of the real notch
depth from the nominal one, all the calculations were performed for two values of this dimension, 0.94a and
1.04a, a being the nominal crack depth. The computed failure loads are shown in Table 4 jointly with the
deviation due to this uncertainty as to the notch depth. An example of the load-CMOD curves numerically
obtained (three point bend, 1 mm notch radius) is shown in Fig 8.

TABLE 4
CALCULATED FAILURE LOAD OF THE TESTED NOTCHED SPECIMENS

Series A Series B

Notch radius Failure load Notch radius Failure load

0.1 mm
0.2 mm
0.5 mm
1 mm

8.9±0.7 kN
7.4±0.6 kN
5.7±0.4 kN
5.0±0.4 kN

0.1 mm
0.2 mm
0.5 mm
1 mm

18.3±1.3 kN
15.2±1.0 kN
12.0±0.9 kN
10.6±0.8 kN
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Figure 8: A load-CMOD curve numerically obtained.

DISCUSSION OF RESULTS

The experimental values and the numerical predictions of the failure load of the tested U-notched specimens
were plotted in Fig 9 as a function of the notch radius, for comparison. The numerical values are the band
bounded by the couple of solid lines, since each one corresponds to one of the notch depths considered in the
calculations (the upper line corresponds to the shorter notch and the bottom line to the longer one). The
experimental values are plotted as points, the bars being the experimental scatter. In all the cases these error
bars meet the uncertainty band of the numerical predictions, so theory and experiments agree.

CONCLUDING REMARKS

It has been shown that the cohesive zone model provides reliable values for the failure load of a high
strength, low toughness steel containing U-notches. This is supported by the experimental results obtained
with four notch radii and two types of loading. Further, the cohesive model requires only two material
constants, one of them measured in independent tests and the other obtained as a fitting parameter of the



theory to different experiments. To obtain the theoretical predictions, the cohesive cracking model was 
incorporated into a commercial finite element programme. 
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Figure 9: Experimental and numerically predicted failure loads 
for the bend tested U-notched specimens. 
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