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ABSTRACT

Three-dimensional elastic-plastic finite element analyses were conducted to model fatigue crack growth in
an M(T) specimen.  Variable amplitude loading with a continual load reduction was used to simulate the
load history associated with fatigue crack growth threshold measurement.  Load reductions with both
constant load ratio R and constant maximum stress intensity Kmax were used.

Results indicated that load reduction with constant R generated a plastic wake such that remote crack
opening occurred during loading, with the crack front opening prior to a region remote to the crack front.
The last region to open was located at the point at which the load reduction originally began, and at the free
surface.  For the limited amount of crack growth simulated, this crack opening was observed to occur when
the applied stress level was approximately 70% of the maximum stress.  Remote crack opening and large
opening stresses have previously been associated with large fatigue crack growth threshold measurements.

INTRODUCTION

Measurement of the fatigue crack growth threshold ∆Kth for large cracks requires that a gradual reduction in
the stress intensity factor range be applied during a fatigue crack growth test.  The ASTM standard test
method E647 recommends that the load ratio R be held fixed during the required load reduction.  In an
attempt to avoid plasticity-induced crack closure as the threshold is approached, an alternative load
reduction has been proposed in which the maximum stress intensity factor Kmax is held constant.  This type
of load reduction results in a continually increasing R such that threshold measurement is made in the
absence of crack closure.  The resulting effective threshold stress intensity (∆Keff)th is often referred to as an
intrinsic measurement of fatigue crack growth resistance [1,2,3,4].  However, Donald and Paris [5] have
suggested a Kmax effect such that both (∆Keff)th and Kmax are needed to define resistance to fatigue crack
growth in the threshold regime.

When a load reduction using a fixed R is used, plasticity-induced closure will occur and the presence of the
plastic wake can influence the resulting measured threshold.  The effective and applied stress intensity factor
ranges ∆Keff and ∆K are related as follows
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where Smax and So are the maximum and opening stresses respectively.  From Eqn. 1, the relationship
between ∆Kth and (∆Keff)th may be written as
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If one considers (∆Keff)th to be a material constant, then changes in the crack opening stress So will result in
changes in the measured threshold ∆Kth.  The measured threshold is now a function of plasticity-induced
closure and no longer an intrinsic measurement of fatigue crack growth resistance.  Eqn. 2 is applicable to
threshold tests with fixed R load reduction only, since under a fixed Kmax load reduction there is no closure
in the threshold regime with So/Smax → R and ∆Kth = (∆Keff)th.

Donald and Paris [5] conducted fatigue crack growth experiments using 6061-T6 and 2024-T3 aluminum
alloy M(T) specimens, and measured opening loads using compliance measurements.  In the threshold
regime, they conducted load shedding at fixed load ratios of R = 0.1 and 0.7.  The data generated at R = 0.7
was a closure-free baseline data set with ∆K = ∆Keff.  Donald and Paris demonstrated that above the
threshold regime, the closure-free data and the data generated at R = 0.1 correlated well when the measured
opening loads were used to compute ∆Keff.  In the threshold regime, however, the measured opening stresses
became excessively large such that the subsequently computed (∆Keff)th were too small when compared with
the baseline data.  These observations can be explained with the aid of Eqn. 2.

Two-dimensional analyses conducted by Newman [6] using a modified strip-yield model indicated that
under load reduction with a fixed load ratio R, remote crack closure away from the crack tip can occur.  This
remote crack closure results in the crack tip opening prior to regions remote to the crack tip during loading,
and a subsequent rapid rise in the magnitude of the opening stress So required to open the crack.  These large
opening stress values would in turn lead to large ∆Kth values (or alternatively small (∆Keff)th values) as seen
from Eqn. 2.  Newman showed that this remote closure occurs within the region in which constant amplitude
pre-cracking was terminated and the load shedding procedure was initiated.  It should be noted that Newman
did not observe remote closure and elevated crack opening stresses when using lower stress levels.
Analyses conducted using a load reduction with a fixed Kmax resulted in closure-free crack surfaces as the
threshold was approached, with the opening load below the minimum load.

Two-dimensional plane stress analyses were also conducted by McClung [7,8], using both the finite element
method [7,8] and a modified strip-yield model [8].  The type of load reduction considered was restricted to
fixed R.  McClung observed elevated crack opening stresses from the finite element analyses during the load
reduction, although these elevated opening stresses were not associated with remote closure except for
simulations employing large initial stress intensity factor ranges ∆Ko.

The objective of this paper is to numerically model fatigue crack growth in a middle-crack tension M(T)
specimen undergoing cyclic loading with a load reduction to confirm the existence of remote closure.
Three-dimensional elastic-plastic finite element analyses were used to model the plasticity-induced closure
developed, and the subsequent crack opening behavior, under a gradually reducing stress intensity factor
range.  Load reduction schemes under both constant R and constant Kmax were also compared.

The two-dimensional modified strip-yield model analyses conducted by Newman averaged three-
dimensional constraint effects through the thickness using an empirical constraint factor.  The analyses
conducted by McClung considered only plane stress.  The three-dimensional analyses conducted in this
study allowed a more realistic three-dimensional perspective of the plastic wake and subsequent crack
opening behavior.  However, while Newman and McClung utilized many analyses to investigate the effects
of numerous variables, the current study was limited to two finite element analyses.



FINITE ELEMENT MODELING METHODOLOGIES AND DIFFICULTIES

The use of three-dimensional elastic-plastic finite element analysis to model plasticity-induced closure in
cracked bodies undergoing cyclic loading has been limited as discussed by McClung [9].  Chermahini et al.
[10,11] used three-dimensional elastic-plastic analyses to investigate the crack opening behavior of M(T)
specimens under constant amplitude loading.  Chermahini et al. [12] and Zhang et al. [13] performed similar
analyses focused on the more complex semi-elliptical surface crack under constant amplitude loading.

Utilizing three-dimensional finite element analyses to model plasticity-induced closure is in general a
computationally intensive effort because the finite element models required have a large number of elements
and must be analyzed multiple times in succession.  A large number of elements is necessary to insure
adequate mesh refinement so that perhaps 5-10 elements exist within the plastic zone at any point on the
crack front under the maximum loading.  Alternately, mesh refinement requirements may be defined using
the reversed plastic zone generated upon unloading [9].  To adequately model through-thickness effects, a
relatively large number of elements are required through the specimen thickness as well.

Crack growth under cyclic loading is then simulated by loading the model with the maximum stress level of
interest, and then releasing the nodes along the crack front to increase the crack size by one element.  The
applied stress is then reduced to the minimum stress of interest, thus completing one load cycle which
corresponds to a crack tip advancement da equal to one element size.  Each load cycle then corresponds to
two monotonic analyses.  For constant amplitude loading, perhaps 5 load cycles are required to achieve an
approximate steady state condition in which the crack opening loads remain relatively constant.

The computationally intensive nature of three-dimensional plasticity-induced closure simulation is further
aggravated when a variable amplitude load reduction such as that used for threshold measurement is
considered as was done in the current study.  Large amounts of crack growth are required to generate
meaningful results in which the stress intensity factor range undergoes a significant reduction.  To simulate
large amounts of crack growth under the cyclic loading, a large number of load cycles are required which
will generally exceed the number needed for a constant amplitude simulation.  In addition, the decreasing
maximum stress intensity associated with fixed R load shedding results in a decreasing plastic zone size
along the crack front.  This necessitates a more refined mesh to insure an adequate number of elements in
the plastic zone as the maximum stress intensity factor diminishes.  To the author’s knowledge, three-
dimensional finite element analyses using load reduction to simulate the load histories associated with
threshold measurement have not been previously undertaken.

FINITE ELEMENT ANALYSES

The M(T) specimen exhibits three planes of symmetry, and consequently only one eighth of the geometry
was modeled using eight-noded hexahedral elements as illustrated in Figure 1.  The model consisted of a
total of 13,430 nodes and 12,906 elements.  Both model generation and solution were performed using the
commercial finite element analysis program ANSYS 5.4.  A thickness B = 4.78 mm, width W = 80 mm, and
crack length 2a = 34 mm were used.  The material was assumed to be an elastic-perfectly plastic aluminum
alloy with modulus E = 70.0 GPa and flow stress σo = 400 MPa.  The von Mises yield criterion and the
associated flow rule were used.  Small deformation theory was employed.  A total of 25 load cycles were
used for the load reduction with fixed R, while a total of 19 load cycles were used for the load reduction with
fixed Kmax.  The crack front was advanced one element size during each cycle with da = 0.125 mm.  With 25
load cycles, the fixed R load reduction analysis corresponded to 50 monotonic analyses conducted
sequentially, an enormous computational burden given the size of the model employed.

To advance the crack, node release at the maximum applied load was performed in an incremental manner to
avoid convergence difficulties [14].  This was accomplished using bundles of truss elements to initially
connect all nodes which were later to be released as part of the analysis.  These truss elements were then
released individually such that total node release took place in an incremental manner.  Contact elements
were placed along the crack surface, allowing the contact stress along the crack surface to be computed.



This enabled a determination of the opening load as that load which first produced zero contact stress along
the entire crack surface during loading.  The contact elements also allowed a determination of which region
of the crack surface was the last to open under an increasing load.

Figure 1:  M(T) finite element model

Due to the computationally intensive nature of the analyses, the number of finite element analyses conducted
was limited to two.  The first modeled a load reduction conducted under fixed R conditions, while the
second considered load reduction with a constant Kmax.  The load shedding used was defined using the
following relationship
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where ∆a is the amount of crack growth following pre-cracking, ∆Ko is the initial stress intensity factor
range at the start of load reduction, and C is a constant.  In the current study, ∆Ko = 30 MPa√m was used.
For the loading with fixed R, a value of R = 0 was used.  For the loading with fixed Kmax, a value of Kmax =
30 MPa√m was used.  Of the total load cycles employed, 5 were used to simulate constant amplitude pre-
cracking with ∆K = ∆Ko and R = 0.  The remaining load cycles were used to simulate load shedding such
that ∆a = 2.5 mm for the fixed R load reduction and ∆a = 1.75 mm for the load reduction with fixed Kmax.

While ASTM E647 recommends a maximum value for C of − 0.08/mm, a value of −0.25/mm was employed
in this study.  This large value was chosen because small values of C result in the need for large amounts of
crack growth before appreciable reductions in the stress intensity factor range are produced.  Large amounts
of crack growth in turn require an excessive number of sequential finite element analyses.

With the ∆a as given above and C = −0.25/mm, the final ∆K employed during the load shedding was 16.1
MPa√m for the fixed R load reduction and 19.4 MPa√m for the load reduction with fixed Kmax as computed
using Eqn. 3.  It should be noted that these values are well above the threshold value for aluminum alloys.
Consequently, while the simulations performed addressed the load shedding process used for threshold
measurement, they did not consider the threshold regime directly.



To validate the adequacy of the mesh refinement used, a monotonic analysis was performed using an applied
stress intensity of K = 30 MPa√m.  In the crack plane ahead of the crack front, the plastic zone size varied
and was found to encompass between 9 and 13 elements.  This level of refinement was considered adequate.
Assuming the crack tip plastic zone is proportional to K 2, for K = 16 MPa√m the plastic zone would
encompass between 3 and 4 elements.  At this level of stress intensity, which would exist at the termination
of the fixed R load reduction, the level of refinement is suspect.

The total amount of crack growth modeled considering both the pre-cracking and the load shedding was δa
= 3.125 mm (fixed R) and 2.375 mm (fixed Kmax).  The newly formed crack surface formed by the crack
growth is illustrated in Figure 2 for the fixed R load reduction.  Following the simulation of crack growth,
the contact stress on the rectangular region shown was monitored using contact elements to determine which
region was the last to open under an increasing applied stress.

Figure 2:  Crack surface
formed by cyclic

loading (fixed R load
reduction)

Results for the crack
growth simulations with
fixed R and fixed Kmax

are shown respectively
in Figures 3 and 4.  The
dark areas indicates
regions of the crack

surface which are closed.  From Figure 3, note that remote closure was observed such that the crack front
was not the last region to open.  The crack front region was observed to open at an applied stress of S/Smax ≈
0.40, while the crack became completely open at a value of S/Smax ≈ 0.70.  The last region to open was
located at the free surface where the pre-cracking was terminated.

The observed normalized opening stress value So/Smax ≈ 0.70 is a relatively large value.  Constant amplitude
three-dimensional finite element analyses conducted by Chermahini et al. [10] at an applied stress level of
Smax/σo = 0.25 resulted in So/Smax ≈ 0.60.  No remote closure was observed, with the crack front at the free
surface being the last region to open.  This lower opening stress value was generated at a higher applied
stress level than was used for the load shedding.  In general, for constant amplitude loading, increases in the
applied stress result in lower opening stresses.  Thus, it is unclear whether the increased opening stress value
determined from the fixed R load shed was due to remote closure or simply the result of a lower applied
stress (the analysis started with Smax/σo ≈ 0.29 and terminated with Smax/σo ≈ 0.12).  It should also be noted
that an increase in the amount of simulated crack growth for the fixed R load reduction analysis could result
in an increased opening stress, with the normalized opening stress possibly exceeding the value of 0.70
determined here.

From Figure 4, for a load reduction with a fixed maximum stress intensity factor, the crack front was the last
region to open and remote closure was not observed.  Again, the last region to open was located at the free
surface.  The opening stress for this load reduction was similar to that determined for the fixed R load
reduction with S/Smax ≈ 0.72.  Thus, while the crack opening behaviors for fixed R and fixed Kmax were
significantly different, the magnitude of the opening stresses were essentially the same.  Clearly, the amount
of crack growth simulated was not sufficiently large to produce a closure free condition, which is the intent
during threshold measurement.  The results shown in Figure 4 suggest that the threshold regime is
approached without the occurrence of remote closure.



Figure 3:  Crack opening behavior under fixed load ratio

    

Figure 4:  Crack opening behavior under fixed maximum stress intensity

SUMMARY AND CONCLUSIONS

Three-dimensional elastic-plastic finite element analyses were conducted to model fatigue crack growth in
an M(T) specimen.  Variable amplitude loading with a continual load reduction was used to simulate the



load history associated with fatigue crack growth threshold measurement.  The analyses were conducted to
confirm the existence of remote closure, in which the crack front opens prior to a region remote to the crack
front.

Results indicated the crack opening process is three-dimensional in nature, with regions in the interior
opening prior to regions near the free surface.  Load reduction with constant R generated a plastic wake such
that remote crack opening occurred during loading.  The last region to open was located at the point at which
the load reduction originally began, and at the free surface.  This remote opening resulted in an opening
stress So with So/Smax ≈ 0.70.  In contrast, for load reduction with constant Kmax, the crack front was the last
to open with a similar opening stress of So/Smax ≈ 0.72.  The amount of crack growth simulated for the load
reduction with constant Kmax was not sufficiently large to produce a closure free condition, which is the
intent of such a test.

Due to the severe computational requirements of simulating fatigue crack growth and plasticity-induced
closure in three-dimensional bodies undergoing large amounts of crack growth, only two analyses were
performed.  The results given are thus limited in scope and further research is required to assess the effects
of the initial stress intensity factor range ∆Ko, the load ratio R, the load shed rate constant C, and material
properties such as flow stress and strain hardening.  The amount of crack growth modeled was also limited,
such that the final ∆K values used were not in the threshold regime.  Further research is needed using models
which simulate more extensive crack growth to explore the crack opening behavior in the threshold regime.
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