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ABSTRACT

This paper presents an efficient approach for evaluating the high-cycle fatigue resistance of components
under general multiaxial fatigue loading. The non-proportional loading effect is studied and a new efficient
approach is proposed for evaluating the effective shear stress amplitude throughout a complex loading cycle.
The idea of this approach is to construct a minimum circumscribed ellipse enclosing the loading path in the
transformed deviatoric stress space. The new definition of the effective shear stress amplitude is the root
mean square of the major semi-axis and the minor semi-axis of the minimum circumscribed ellipse, to take
into account the out-of-phase loading effects. With this new approach, stress invariant-based multiaxial
fatigue criteria, such as the Sines or Crossland criterion, can be applied with improved accuracy for fatigue
evaluation under out-of-phase multiaxial loading. Test results collected from the literature, which include
complex stress histories with different waveforms, frequencies, out-of-phase angles and mean stresses, were
used to validate the approach here proposed. The methodology proposed in this paper can be inplemented as
a post-processing step using a commercial FEM code. A torque arm of an automotive rear suspension is used
for illustration.

INTRODUCTION

Engineering components are generally subjected to multiaxial fatigue loading, such as automobile suspension
and transmission parts, blades in gas turbine rotors, pressure vessels, nuclear reactors and so on.  It is one of
the most difficult tasks in engineering design to translate the information gathered on the uniaxial fatigue
tests to applications involving complex states of cyclic stress-strain conditions.

During the past decades, substantial research has been carried out to develop methods for multiaxial fatigue
life prediction such as [1-6]. These methods differ considerably in formulation, in the range of applicability
and in the reliability of the predictions. Most industrial applications involve high-cycle fatigue problems. For
a comprehensive and updated review on high cycle metal fatigue see [7].

However, design engineers are often faced with difficulties in applying these approaches to multiaxial fatigue
design of HCF components. One difficulty is that most of the existing multiaxial fatigue criteria can only
provide good predictions for proportional (in-phase) loading. Another difficulty involves their



implementation for general complex multiaxial fatigue loading. In the pre-design stage and computer aided
optimum design of components, efficient and easy-to-use methodologies are required for multiaxial crack
initiation life prediction of components under general service loading.

Among current multiaxial fatigue criteria, stress invariant-based criteria, such as the Sines [8] and the
Crossland [9] criterion, are attractive for engineering design of HCF components due to easy-to-use. They
can provide good predictions for proportional loads with mean stress effects. However, they are not
conservative for general complex multiaxial fatigue loading [10].

In this paper, non-proportional fatigue loading effects are considered and a new approach is proposed for
evaluating the effective shear stress amplitude and mean value throughout a complex loading cycle. An
efficient numerical algorithm is developed for implementing the proposed approach. Then, the Sines and
Crossland criteria are extended to fatigue evaluation under general complex multiaxial loading. Finally,
multiaxial fatigue test results collected from the literature, which include complex stress histories with
different waveforms, frequencies, out-of-phase angles and mean stresses, are used for validating the
developed approach. The proposed approach and the implemented procedure is illustrated through the
example of a torque arm of an automotive rear suspension.

EFFECT OF NON-PROPORTIONAL MULTIAXIAL LOADING ON FATIGUE ENDURANCE

General service loading of engineering components can be grouped in two categories: proportional and non-
proportional loading. Proportional loading causes local stress states with fixed principal directions and
constant ratios of the principal stresses fixed during the loading cycle. Non-proportional loading causes local
stress states with principal directions and/or the ratios of the principal stresses varying with time during the
loading cycle.

The effect of non-proportional multiaxial loading on the fatigue resistance of components has become an
important topic of study. Although experimental results from non-proportional loading are limited, test
results revealed the detrimental effect of non-proportional loading on fatigue endurance. For example, two
typical load cases were tested by Heidenreich et. al [11]. In the first load case, an alternating normal stress σx

occurs in combination with an alternating shear stress σxy with a phase shift of 90°, and in the second load
case a pulsating normal stress σxx acts together with a compressive pulsating normal stress σyy. These two
load cases have the same principal stress-time history [5]. In accordance with the classical multiaxial criteria,
such as the von Mises criterion or the Tresca criterion, the same equivalent stresses are calculated in both
load cases, which means that the same fatigue damage would be predicted by these classical multiaxial
criteria. However, the fatigue damages caused by these two load cases are very different as verified by
experiments [11].

The main difference between the two load cases is that load case 2 is proportional loading, whereas load case
1 is non-proportional loading due to the variation of the principal directions. In the transformed deviatoric
stress space, the load path of case 1 becomes an ellipse due to the variation of the principal directions,
whereas the load path of case 2 is a rectilinear line due to the unvaried principal direction [12]. This shows
the necessity to consider carefully the non-proportional loading effect in the multiaxial fatigue design.

THE MINIMUM CIRCUMSCRIBED ELLIPSE APPROACH

For multiaxial fatigue analysis, it is an essential and difficult task to evaluate the shear stress amplitude and
mean value under complex multiaxial loading histories. There are three existing approaches [6]. They are the



longest projection, the longest chord and the minimum circumscribed circle methods as shown in Fig. 1,
where τa1, τa2 and τa3 represent the shear stress amplitude obtained by these three methods respectively. A
common weakness of these methods is that they can not differentiate the proportional and non-proportional
loading paths.

A new approach, called the minimum circumscribed ellipse approach, is here proposed to account for the
non-proportional loading effect. The idea is to construct a minimum circumscribed ellipse that can enclose
the whole loading path throughout a loading block.  The graphical representation of the new method and the
relation with the minimum circumscribed circle approach [6] is illustrated in Fig. 2. Rather than defining

aa R=τ  by the minimum circumscribed circle approach, a new definition of RR baa

22 +=τ  is proposed [13-

14], where Ra and Rb are the lengths of the major semi-axis and the minor semi-axis of the minimum
circumscribed ellipse respectively. The important advantage of this new approach is that it can take into
account the non-proportional loading effects in an easy way. As shown in Fig. 2, for the general non-

proportional loading path 1, the shear stress amplitude is defined as RR baa

22 +=τ . For the rectilinear

loading path 2, it is defined as aa R=τ , since Rb  is equal to zero for loading path 2 (in-phase loading case).

IMPLEMENTATION OF THE MINIMUM CIRCUMSCRIBED ELLIPSE APPROACH

Synchnorous Sinusoidal Stress Histories
If the local stress-time histories are synchronous sinusoidal waveforms, the corresponding loading path is an
ellipse in the transformed deviatoric stress space. The minimum circumscribed ellipse is just the loading path
curve. The lengths of the major semi-axis Ra and the minor semi-axis Rb can be solved analytically [12]. As
an example, consider the load case with stress components expressed as:
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The new definition of the shear stress amplitude in the transformed deviatoric stress space can be expressed
in the analytical formulations:
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General Complex Stress Histories
For general irregular stress histories, it is a difficult problem to find the minimum circumscribed ellipse
enclosing the whole loading path ψ′ during a loading block, if solved by usual analytical methods. An
efficient approach using the numerical mathematical programming method is developed to solve this problem
[12-14]. To find the center point co-ordinates w*, the major semi-axis Ra and the minor semi-axis Rb of the
minimum circumscribed ellipse (see Fig. 2), a sequential linear programming optimizer in conjunction with
the simplex method [15] is employed efficiently. Then, the new definition of the shear stress amplitude can

be calculated as RR baa

22 +=τ .

A FEM-BASED PROCEDURE FOR MULTIAXIAL FATIGUE LIFE PREDICTION

The computation of the fatigue life of a component consists of two parts: dynamic stress computation and
fatigue life prediction. Dynamic stress histories can be obtained either from experiment (mounting sensors or
transducers on a physical component) or from simulation. The simulation-based approach consists of
performing finite element analyses of the component using applied component loads. Then, the fatigue life
prediction can be carried out as a post-processor.

The new approach for evaluating the effective shear stress amplitude throughout a loading cycle makes it
possible to extend the Sines or the Crossland multiaxial fatigue criteria for finite fatigue life prediction under
general multiaxial loading. After computing the local stress-time histories at critical component locations by
the finite element method, the multiaxial fatigue evaluation procedure can be followed as:

1. Compute the Hydrostatic and Deviatoric Stresses
 Split the stress tensor σ(t) into its deviatoric and spherical parts:
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 The stress deviator σ′(t) is computed as:
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 For a cyclic loading, the hydrostatic stress )t(HP  is a periodic scalar function. Its maximum value is:

                                    ( )( ){ }ttrPH σmax
3

1
max, = (11)

For example, the maximum hydrostatic stress PH,max during a loading cycle of synchronous sinusoidal out-of-
phase stresses Eq. 1 can be calculated analytically as:
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2. Transform the Stress Deviator σ′(t) to Reduced Euclidean Space



To make it easier to compute the shear stress amplitude, the following transformation rules can be used [6]:
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where σ'xx, σ'yy, σ'zz, σ'xy, σ'xz, σ'yz  are the six components of the deviatoric stress vector σ'(t), and S1, S2, S3, S4,

S5 are the five components of the transformed deviatoric stress vector S(t). With the above transformation,
the deviatoric stress vector σ'(t) is mapped onto a vector S(t) in a 5-dimensional Euclidean space E5. In this
way, the stress deviator is fully described by a smaller number of components in the transformed space.
During a periodic loading, the tip of the vector S(t) describes a closed curve Φ′ in the transformed deviatoric
stress space.

3. Computation of the Equivalent Shear Stress Amplitude

In the transformed deviatoric stress space, the loading path is a closed curve Φ′ in the deviatoric hyperplane.
If the local stress-time histories are the synchronous sinusoidal waveforms as expressed in Eq. 1, the
equivalent shear stress amplitude can be calculated directly using Eq. 2. When the local stress-time histories
are irregular waveforms, a numerical approach with a sequential linear programming optimizer in
conjunction with the simplex method can be employed to find the major semi-axis radius Ra and the minor
semi-axis radius Rb of the minimum circumscribed ellipse. Then, the equivalent shear stress amplitude can be

calculated as RR baa

22 +=τ .

4. Fatigue Life Prediction

Once the equivalent shear stress amplitude τa and the maximum hydrostatic stresses PH,max throughout a
general multiaxial loading block have been computed correctly following the above steps, the fatigue life
N  can be obtained from the iterative solution of the formulation of the Crossland´s criterion ( or the Sines
Criterion) by using the Newton-Raphson algorithm:
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f-1(N) and t-1(N) are the uniaxial reversed bending fatigue strength and the reversed torsion fatigue strength at
N  cycles, respectively.

APPLICATION EXAMPLES AND VALIDATION OF THE PROPOSED APPROACH

Most of the published experimental results were obtained from the cylinder or bar specimens under Biaxial
or Triaxial synchronous sinusoidal stresses as expressed in Eq. 1, so the closed form formulations of the
general approach proposed in this paper can be applied easily for prediction. The verification of the proposed
approach uses experimental data collected from the literature shows good correlation between predictions
and experiments. Due to space limitation, only the comparison with Simburger´s  test results [16] is shown in
Table1. The last column of Table 1 shows the error index of the prediction expressed as the relative
difference between the left and right handsides of Eq. 14.

A group of biaxial fatigue loading cases (σxx and σyy) including the out-of-phase angles, different waveforms
and different frequencies as shown in Fig. 3 is analyzed by the approach proposed and implemented in this
paper. The loading path corresponding to each load case in the transformed deviatoric stress space is shown
in Fig. 4. It may be noticed that the loading path curves are strongly influenced by the out-of-phase angles,



waveforms and frequency ratios. The last two rows in Table 2 display the shear stress amplitude values
obtained with the definition used by the current approach (the minimum circumscribed circle approach) and
the definition proposed in this paper, respectively. It is shown that the new approach can characterize the
non-proportional loading effects. Table 3 shows the comparison between the predicted and the experimental
result by McDiarmid [17]. Where σA is the uniaxial longitudinal fatigue strength at 106  cycles, σ1a is the

allowable maximum principal stress amplitude for each load case at 106  cycles. σ1a /σA represents the
reduction of fatigue strength due to the bi-axial loading effects. Agreement between predicted and
experimental fatigue strength is satisfactory.

As an application example, fatigue analysis of a torque arm of an automotive rear suspension was carried out.
As shown in Fig. 5, the model is fixed at the rim of the larger hole and loaded at the edge of the smaller hole
with dynamic forces Fx(t) and Fy(t). Quasi-static finite element analyses of this component were performed
using unit load vectors using the ANSYS [18] finite element code. The stress influence coefficients obtained
from these analyses were then superimposed with the dynamic loads Fx(t) and Fy(t) to compute dynamic
stress histories at each node point of the component. Then, node fatigue damage evaluation was carried out as
a post-processor with the procedures presented above. Fig. 6 shows the fatigue damage contour plot of the
torque arm component.

CONCLUSIONS

The minimum circumscribed ellipse approach provides an efficient and easy-to-use approach to fully
characterize the non-proportional loading effects. With this new approach for evaluating the effective shear
stress amplitude, the Sines and Crossland multiaxial fatigue criteria can be extended for finite fatigue life
prediction. Multiaxial fatigue test results collected from the literature, including complex stress histories with
different waveforms, frequencies, out-of-phase angles and mean stresses, are used for validating the
developed approach in this paper. The correlation is satisfactory. The numerical algorithm for computation of
the major and minor ellipse semi-axes, required to evaluate the shear stress amplitude and mean value, is
general and efficient. It provides an unified approach for fatigue design, that is particularly suitable for
integration with computer aided design.
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TABLE 1: Comparison with Simburger´s tests [16], Material=CK45
N=100 000 cycles,  f-1(N) = 423 MPa, t-1(N) = 287 MPa

Stresses [MPa] expressed in Eq. 1 Error Index
σx,a σx,m σy,a σy,m σxy,a σxy,m β γ I (%)

234 0 256 256 0 0 180 … -4.81

300 -300 330 330 0 0 0 … -13.16

275 -275 302 302 0 0 90 … 0.56

183 183 367 367 0 0 0 … 2.69

250 250 275 275 0 0 180 … 10.87

327 0 0 0 188 0 … 0 4.35

250 250 0 0 144 0 … 90 -11.34

288 0 0 0 165 165 … 90 -8.23

292 0 0 0 167 0 … 60 -7.03

285 0 0 0 163 163 … 0 -9.26

304 0 0 0 174 0 … 90 -3.18

                 TABLE 2: Comparison between results by the new approach (Minimum Circumscribed
                                   Ellipse) and the current approach (Minimum Circumscribed Circle)

case 1 case 2 case 3 case 4 case 5 case 6

Major semi-axis Ra 188.2 256.5 326.0 306.2 188.0 326.0

Minor semi-axis Rb 0 233.1 148.0 177.0 187.0 188.0

τa (Current approach), MPa 188.2 256.5 326.0 306.2 188.0 326.0

τa  (New approach), MPa 188.2 346.6 358.0 353.6 265.4 376.5

              TABLE 3: Comparison between predicted and experimental fatigue strength results [17]
Load Case σ1a ⁄ σA (predicted) σ1a ⁄ σA (experiment)

1 0.81 0.82

2 0.57 0.63

3 0.58 0.57

4 0.56 0.63

Figure 1: The current approaches for evaluating the
amplitude and mean value of shear stresses τ(t).
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Figure 3: Biaxial stress histories of load case 1—6.

Figure 4: The loading paths of load case 1-6 in the transformed deviatoric stress space.

Figure 5: The example torque arm model and meshes. Figure 6: Fatigue damage contour plot.
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