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ABSTRACT

The procedure for solution of the problems on the stressed state and limit equilibrium of anisotrop
cylindrical shell with surface cracks is suggested. The equations of refined Tymoshenko-type shell thec
are taken as the input ones. The essence of method lies in that a three-dimensional problem for the shell
a surface crack of given sizes is reduced to a two-dimensional one for a shell with a through crack
unknown length using the generalisgdmodel analogue. Here to the crack edges the unknown efforts and
moments are applied and they satisfy the plasticity conditions for thin shells. On the basis of distortic
method the two-dimensional problem is reduced to a system of singular integral equations with unkno
limits of integration and discontinuous right-hand parts, which contain the unknown efforts and momen
values. This system is complemented by the plasticity conditions, and efforts and moments boundedn
conditions. The numerical algorithm for solution of this system is developed. The numerical analysis f
dependence of the crack front opening on its size, physical-mechanical parameters of the shell is carried
The relation between the critical crack sizes and loading is determined on the basis of deformable crite
used in thé, -model.

INTRODUCTION

Investigation of the stressed-strained state and limit equilibrium of anisotropic shells (including th
orthotropic ones) with cracks is carried out within the scope of elasticity theory. In addition, namely th
Kirchhoff shell theory equations are taken as the input ones. Application of the classical theory i
calculating the anisotropic-material shells does not allow to take into account inherent in them effec
connected with finite shear rigidity of thin-walled elements. Besides, the classical shell theory does n
allow to satisfy completely the natural boundary conditions on the crack contour. So, we shall use tl
refined shell theory equations, based on the Tymoshenko hypotheses, accounting for the stated ak
peculiarities, to solve the problem on limit equilibrium for an anisotropic elastoplastic shell with a surfac
crack.

Note that construction of solution to the classical three-dimensional problem for a shell with a crack, whe
two systems of three-dimensional equations in two regions - elastic and plastic with unknown bounde
between them, is a very complicated mathematical problem. Therefore, for the case, when plastic strains
the front of a non-through crack develop as a thin strip through the whole shell thickness, we shall use
5.-model analogue. This means, that the plastic strains thin strip is replaced by the surfaces of ela:

generalised displacement discontinuities, and the plastic strains zone reaction on the elastic zone we ¢
replace by the unknown efforts and moments , that satisfy the thin shell plasticity conditions. Thus, tl



three-dimensional elastoplastic problem for the shell with a surface crack of given sizes is reduced to 1
two-dimensional one on the limit equilibrium of elastic shell with a crack of unknown length, to which
edges the unknown efforts and moments satisfying the plasticity conditions are applied.

MATHEMATIAL MODEL OF SURFACE CRACK IN A THIN SHELL

Consider a thin cylindrical shell, related to the curvature nBg41], (Fig.1). The shell is weakened by the
surface crack located in the crossectizi® or 3=0 and is under the forces and moments symmetric about
the crack. 4o, and 2l are the length and depth of the crack, respectivblgn2R are the thickness of the
shell and radius of its medium surface, respectiyal/a coordinate normal to the medium surface.
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Figure 1: Scheme of surface crack.

It is assumed that on the crack extension in depth, i.e. on the deifhhig, X[ and h<y<h-2d the constant
stresse®rx are acting (here=a,(3 corresponds to the crack locatiog,=l¢/R , o1x is yield point for the

shell material perpendicular to the crack surface direction). In the plastical zones in the crack exgension
<|X|< X1 (X2= 11/R) the unknown normal fordd and bending momem act.

In addition,N andM satisfy the corresponding plasticity condition, e.g., the Treska condition in the form of
plastic hinge [2]
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For the case of ideal elastoplastic mate¥igd) andM(x) are assumed to be constaat{x)=crx [2 ]
For reinforced material [3]
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Herem'™= 0gx/ O7x, Ogxis the strength limit of material perpendicular to the crack surface direBtldnare
such unknown constants , that condition Egn.1 is satisfied.
But under such approach such condition is not fulfilled for normal stresses

00 (%~ 0,y = 0, (% + 0y") 3)

for any point (0,%, y). This is impossible, because always may be fourd-h,h-2d, for which
On(Xo-0,y)=01x, andon(xo*+0, y)< orx.

Assume 0,= OTx, atx=x(Xy+0) through the whole shell thickness, i.c., for all valueg. &ut then through

the whole thicknessl(X;£0) =2h orx, M(X%+0) =0. Since the line of unit fibre under the known plasticity
conditions for thin shells is constant, in the plastical z2grgx|< x; the bending moment is absent. It means,
the stresses diagram along the plastical zones must change the coordinate of unit fibre. Therefore,



condition Egn.1 will be presented in the form:

% = ~kmé ”(T)GD(T)’ Mh(zT) = —knf n(T)GD(T)[l— Ezr(T)] Tp<T1<1], (4)

Heret=x/X; ; To=Xo/X1 ;km=sgrH ; &:=y/h ; Y is the unit fibre coordinate.
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Lety, change along the plastical zones linearly.
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Substituting Egn.6 in Eqn.4 and taking into account Eqn.5, we shall obtain
N(T) M (T)
—2 =g + T+ T2, 5 = km(*)(n'b + mlt + mt? + rg|T|3), (7)
oTx h®orx

Here

nO:v1(1+wro) n1:\)2(1+cgr()—(,o\;1 No= -V 5
rrb:—vlr(2+wro) ml:2vl(1+wr0)—vgur((2+wr(), (8)
mz=—V1w+2V2(l+wT0) mz= Ny, w:(l— E)/(l—Tc).

Thus, from Eqns5,6 follows, that fortt, the stresses along all shell thickness are equaldobecause
N(x+0) =2h orx, M(%+0) =0 and this means that the condition from Eqn.3 for gnjyh, -h+2d] is
satisfied.M(x1)=H. Subject to the sign of bending moment, two cdg@so)=1 or&,(x19)=-1 are possible.

So, in order the normal stresses in the plastical zones be continuos, it is necessary, that a coordinate o
unit fiore change even under the linear law Egn.6, and the normal force and bending moment a
respectively, quadratic and cube polynomials from the coordinate

Hence, within the scope of this model the three dimensional problem on determination of the stressed s
and limit equilibrium of the shell with a surface crack of lendthi2reduced to the two-dimensional one of
elasticity theory for a shell with a through crack of unknown lentthod the edge of which the following
conditions
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are satisfied. Her&\;,, M, are normal force and bending moment, respectively, which are the reaction o
material on the discontinuity of inner bonds over the crack. According to our assumption about stresses
this zones they are determined according to the formulas

N =207, (h-d), M =207,(h- d d (10)

N2, M¢ are normal force and bending moment, respectively, in the shell without crack, caused by an ou
load k=1 for a circumferential crack=2 for a longitudinal crack)



INTEGRAL EQUATIONS FOR OUR PROBLEM

On the basis of distortion method a system of resolving nonhomogeneous differential equations of the te
order, which takes into account the presence of displacements jumps and rotation angles due to the crac
written down for solving the obtained elastic problem. The equations of Tymoshenko-type shell theory a
taken as the input ones. Using thE-periodic (along a circumferential coordinate) fundamental solution to
this system [4,5], the efforts and moments integral representation in terms of unknown jumps of generalis
displacements is written. Satisfying the boundary conditions on the crack opposite edges Eqgn.9, the probl
is reduced to a system of singular integral equations with unknown limits of integrationdér the
problem formulation is unknown) and the discontinuous right-hand parts, which include the unknown valu
of efforts and moments, acting in the plastic zones In the case of symmetric loading the system is such
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where
d d
0209 =g (. 0209=gly 0, t=1 (12)

f6) =N Ex . X =M( x)

The expressions fai;, ,; ¢ for orthotropic cylindrical shells with crack are given in [5], for isotropic
and transversally-isotropic shells are given in [1[8](X)], [yyx(X)] are the unknown jumps of normal
displacement and rotation angle under transition over the crack line. The expressions for determination
N(x)andM(x) are contained in conditions Eqn.9, what means in the right-hand part of the system of integr
equations Eqn.11. Thus, in these equations besides the unknown integrdl lith#svalued,H are also
unknown. So, the system Eqgn.11 is complimented by the plasticity condition Eqn.1 and also by tt
conditions of boundedness of normal force and bending moment near the crack, i.e. the corresponc
stress-intensity factors must be equal to zero.

Kn(X1) =0,  Kpn(¥)=0 (13)

On integrating the solution obtained and having substituted it into formula

8(x, V) = )+ yx (X 5], [ k< %, |v[< h (14)

we obtain the relation for determination of opening of the crack edges at any point. This relation aft
substitution of critical value of the crack openibg for d(x,y) becomes a criterion equation which
establishes connection between the applied load, crack dimensions, physical-mechanical and geome
parameters of the shell under conditions of limit equilibrium state.

THE SOLUTION OF INTEGRAL EQUATIONS

We shall note , that the right-hand sides of the system Eqgn.11 are discontinuous functions. The dir
methods for such system solution, as it was shown by the numerical tests [1] gives a large error at
discontinuity point. Since, we are interested in the crack opening at this point.

The solution of the system will be presented in the form [6]



¢ =hO+e (), =12, (15)

whereh (t) is the solution for a corresponding canonical singular integral equations with the discontinuou
right-hand parts.
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This system may be solved using the inversion formula for Cauchy type integrals. Thué}lﬁ;hmf are
constant,h (t) is such

R =6 [HP O +a; H(+b; Kk o2 (Y] /B2 o 1- 2R a7)

where
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Ly(t) = In . Ly(t) =In
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Substituting Eqn.15 in Egn.11 and taking into account Eqn.16 we obtain a system of singular integt
equations for determining the functiap (t) . This system is the same as Eqn.11, wifgi¢) is changed

by W; (t) , and f;(t) is changed byf (1) , where
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Taking into account , that (§) are determined by the unknown varialdtesP , the Eqn.19 is written in
the form

2
P =g?m+35 6, dP(), j=1 2 (20)
p=1



whereG; = N/(2h); G = M/ It ép), p= 0,1 2 are expressed by the functidpét) and K;; (2) .
According to Eqn.20 the functiong; (t) will be presented in the form of linear combination

2
G O=wlM+ S G uP M, =12 (21)
p=1
Every couplqui(p) (t), 1=1,2, p=0,1 2 is the solution of a system of singular integral equation of type

from Eqn.11 with the right-hand pagi% p), and it satisfies the conditions

1
[uPmdt=0, p=012 22)
-1

The system of integral equations from Eqgn.11 taking into account Egn.20 is constructed by the mechani
quadratures method [5]. This allows to reduce its solution to the system of linear algebraic equations. E
the unknown length of plastical zone is contained in these equations nonlinearly. So the procedure
solving these equations is such. In some wag chosen, then the system of integral equations is solved for
eachp=0,1,2. From condition Eqn.13 we determiAgd and test the plasticity condition Eqn.1. If this
condition is fulfilled to a prescribed accuracy, the problem is solved, and if not, thexv&édughanged, and

the procedure is repeated. As it was said, that the crack opening at any point is found by the formula fri
Eqgn.14.

NUMERICAL RESULTS

Numerical analysis for different values dffor a transversally-isotropic shell with a longidudial crack is
carried out. The shell is under inner pressuri Fig.2 the graphics of functions for relative values of the

crack front openingBD: 0(0, h—2d) E/(Loty) versus the parametelrrO , Which characterizes the outer

loading are presentechoz pR(2hoty). The computation is made for such values of parameters
h/R=001, v=03,d/h=0.6, The curves (1), (2) are calculated for the crack lergth 01R , the
curves (3), (4) for théy =0.2R.
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Fig.2: Crack front opening versus crack length , loading and shear module.



EEEEEEEEEEEN Correspond$—n(a) :Const, é<|)d< )ﬁ-_
corresponds to the results obtained within the scope of proposed model

In addition, the curvefl), (3) correspond to the isotropic shel/(G' = 2.6) and (2), (4) correspond to the
transversally-isotropic one{/ G' =20). E/G'is the ratio of the elasticity module to the shear module in
the area elements, perpendicular to the medium surface. ®Wheh,ng ,Ig increase, the deviation between

the results for different models will be increase too. Thus\’at 0.8, lo =0.2R this differences exceeds

20%. When the crack depth increases the difference between the results obtained by the two models
decrease. It should be noted also that when the crack is increasing, the anisotropy influence on its openir

decreases.
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