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UNCOUPLED DYNAMIC FRACTURE APPROACH

J.C.W. van Vroonhoven'

An uncoupled approach for the analysis of dynamic crack
propagation is proposed. This new approach consists of two
steps. Firstly, the elastodynamic stresses are calculated for
the undamaged elastic body. In this calculation it is assumed
that there are no cracks. Secondly, possible crack patterns are
derived from the stress data with the use of stress-intensity
factors for slightly curved cracks and a dynamic fracture
criterion. The advantages of the uncoupled approach are its
ease-of-use and the little computational effort.

INTRODUCTION

Problems of dynamic fracture involve stress waves and crack propagation.
There exists a certain interaction between these effects: the (dynamic) stresses
determine the crack propagation, while rapid fracture initiates new stress
waves. This interaction can be incorporated in a full-scale dynamic fracture
analysis. The advantage of such analysis is that fracture-mechanics methods
have been studied extensively and possess a high degree of accuracy. A strong
disadvantage, however, occurs when the finite-element method is applied to
problems of dynamic crack propagation. Because of the material rupture and
the creation of new crack surfaces, the geometry of the elastic body changes
continuously. This necessitates a continuous adaptation of the element mesh,
a shift of the singular crack-tip elements to the new position of the crack tip,
and an interpolation of the mechanical quantities from the old to the new
element division. These moving-element techniques require much computing
time, because the assembly of all element contributions into one global stiffness
matrix must be repeated after each crack increment. Therefore, an alternative
approach towards dynamic failure analysis is proposed.
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The uncoupled dynamic fracture approach (1] is based on the elastodynamic
stresses calculated for the undamaged configuration. The dynamic response
of the elastic body to a time-dependent load is determined first. Afterwards,
as a form of post-processing, predictions of crack patterns are derived from
the dynamic stress data. The interaction between the crack propagation and
the stress waves is only partially accounted for in this uncoupled analysis,
because the disturbing effect of crack propagation on the stress distribution is
neglected. Also, the mutual influence of multiple cracks is not incorporated. Of
course, it cannot be expected that this uncoupled approach will produce highly
accurate results for the entire fracture process, especially near the moment of
final collapse. Nevertheless, it is possible to analyse the initial stages of crack
propagation with reasonable accuracy and with limited numerical effort.

DESCRIPTION OF THE METHOD

The first step in the uncoupled approach is the calculation of the dynamic
stresses in the elastic body as function of time, e.g. by the finite-element
method. It is assumed that the material remains linearly elastic and that
no cracks are present.

The second step is the initiation of a crack. We assume the existence of
a crack at a certain position and at a given moment of time. The location,
length, and direction of this crack can be chosen freely. The crack, however,
is a virtual crack in the sense that it does not exist in reality. The stresses in
the positions where the crack is assumed, are considered to act on the crack
surfaces, opening the crack, and creating a stress intensity at its tip.

The third step in the uncoupled fracture approach is the determination of
the crack path. After the initiation of the crack and at any intermediate stage
of the fracture calculation, we must calculate both the speed and the direction
of further crack propagation. Concerning the dimensions of the elastic body, we
restrict ourselves to thin-walled, plate-like structures with slight curvature such
that we may use the approximation of a thin, flat plate containing a through-
thickness crack. As a result, we may employ the well-known expressions for
the stress-intensity factors for cracks in plates (2, 3, 4]. The thickness of the
plate is denoted by h and the shape of the curved crack is represented by the
function y = A(z) for —a < z < +a. This crack-shape function is determined
by measurement of the distance to the line connecting the end points of the
crack path, as shown in Fig. 1. So, we have A(+a) = 0. The directions
normal and tangential to the crack surfaces are denoted by n and s, while the
z-direction is perpendicular to the plate.

The stresses along the crack are derived from the elastodynamic stresses
calculated at step one and are denoted by oij(z,t) at time ¢t. The stress-
intensity factors K; and K for a curved crack loaded by in-plane tensile and
shear forces o, (x,t) and 0,,(z, ) are determined with the use of the results of
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Cotterell and Rice [2]. The factor Kz for a curved crack loaded by transverse
shear forces o,.(z,t) has been calculated in [4]. The stress-intensity factors
ki and ks, for a curved crack loaded by out-of-plane bending and twisting
moments M,,(z,t) and M, (x,t) have been calculated in [3] on the basis of
classical plate theory. These factors are expressed in terms of the function
A(z) and the respective stresses and moments.

The fracture criterion is based on the J-integrals. The relations with the
stress-intensity factors are given by (see [1, 3] and Hui and Zehnder [5])

h -2 2 h 2 2 h 2
Jl = E(IXI‘{‘K”)+’3—E(k1+k2)+55K111, (1)
2h 2h
J2 =~ = f KII(II - :?:E kl k2 ) (2)

where F and G are the Young’s and shear moduli of the material.

The direction of crack propagation is derived from the direction of the J-
integral vector. The crack-propagation angle fp is measured with respect to
the tangent to the crack surface, at the crack tip. According to Cherepanov
(6, Ch. 5] we have

op = 2 )
tan Op = Jl 5

The speed of crack propagation is derived with the use of a dynamic frac-
ture criterion. According to Freund [7, Sec. 6.4] the energy release rate for a
dynamic problem equals the energy release rate for the corresponding static
equilibrium problem multiplied by a universal function of crack speed. The
length of the J-integral vector is then interpreted as the equilibrium energy
release rate and the crack-propagation speed c is determined by

g(c) \/J12+J22 = Gc, (4)

where G¢ is the critical energy release rate. A good approximation for the
universal function of crack speed g(c) is

g(c) = (1 —c/cr) 1 —c/ep, (5)

where cg and cp are the speeds of Rayleigh waves and dilatational waves.
The new position x = (z,y) of the crack tip is now calculated as

Xtipnew — Xtipold + c- AtCRa (6)

where ¢ is a vector with length ¢ and with its direction determined by the
angle fp. The time step Atcg for the crack increment may be larger than the
time step Atpp used for the finite-element computation of the elastodynamic
stresses, because the crack speed is always much less than the stress-wave
speed. The time step Atcr should not be chosen too large, because otherwise
the condition for stability of the algorithm (6) will be violated.
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EXAMPLES

The uncoupled fracture approach has been applied to a single-edge notched
beam of length 440 mm, height 100 mm, and thickness 10 mm (see [1] and
Fig. 2). Forces I| and F, = F3/10 are applied such that a shear-stress situation
arises in the middle section of the beam. A crack with length 15 mm is initiated
at the middle of the bottom edge of the beam. Crack propagation occurs along
a curved path and must end at the upper edge of the beam to the right of the
point where the force £} is applied [8]. The crack pattern of Fig. 2 agrees with
both the experimental and the numerical results of Schlangen (8], although
deviations occur near the point of crack arrest.

As a three-dimensional example we have studied a hollow cylindrical pipe
of length 400 mm and inner and outer radii 30 and 40 mm, which is loaded by
torsional moments at both end surfaces (see [1] and Fig. 3). A through crack
is initiated in the middle cross section of the pipe. Crack propagation has been
calculated in two (symmetric) directions. The results are shown in Figs. 3-4
and agree with the experimental work of Richard [9].

CONCLUSIONS

An effective and low-cost method for fracture calculations has been established.
The great benefit of this uncoupled fracture approach is that a continuous
adaptation of the finite-element division is not necessary. In addition, the
stresses calculated by one elastodynamic finite-element analysis can be used
repeatedly for multiple crack computations. The method has been applied to
various problems in two and three dimensions. Reliable crack-path predictions
have been obtained for the early stages of (mixed-mode) fracture with rather
limited computational effort.
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Figure 1: Geometry of curved crack.
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Figure 2: Crack pattern in single-edge notched beam loaded under
shear conditions. Crack is initiated at bottom edge of beam.

459



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

D04

Figure 3: Crack pattern in hollow cylindrical pipe loaded
by torsional moments. (a) Side view.

Figure 4: Crack pattern in hollow cylindrical pipe loaded
by torsional moments. (b) Cross-sectional view.
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