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THERMODYNAMIC ANALYSIS AND MODELLING OF GRAIN-
BOUNDARY VOID GROWTH UNDER HIGH TEMPERATURE

Thor D. Skrypnyk’, Andriy H. Nykyforchyn'

An analytical model for void growth on grain-boundaries at high
temperatures is addressed. The void volume accumulation is con-
trolled by nucleation and diffusion of vacancies. A thermodynamic
analysis of the chemical potential of vacancies yields to a
boundary problem, a solution to which is found in explicit form.

INTRODUCTION

Creep fracture of most structural materials at elevated temperatures often is caused
by accumulation of damage in the form of void nucleation, growth and
coalescence. In many metals and alloys, void nucleation occurs at small strains.
Here ductile mechanisms of cavitation have negligibly small effect and the voids
grow mainly due to accumulation of vacancies, which nucleate and diffiuse on grain
boundaries. Void nucleate on grain boundary facets oriented perpendicularly (or
slightly deviated) to the maximum normal stress,

Several models have been proposed for modelling the diffusion-controlled
grain boundary void growth in creep (a brief overview is given by Skrypnyk and
Nykyforchyn (1)). Most of them approximate voids as circular or elliptic-shaped
holes in the grain boundary facets. However, these models assuming the accumu-
lation of vacancies to be the leading mechanism of void growth do not incorporate
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directly this mechanism, while deriving the condition of thermodynamic balance on
void surface. The present paper intends to include these effects into the modelling
of the void growth.

THERMODYNAMICAL ANALYSIS

For a solid containing N atoms and n (n<<N) vacancies, which can be considered
as the particles of another type, we can apply the form of Gibbs free enthalpy for a
weak solution

G =Ny, +anln(%v)+nU/ — UO(N +n)Q. (1)

The chemical potential of vacancies in the system depends on the volume fraction ¢
of the imperfections

oG
;1=E=U1+lenc—croQ. (2)
The equilibrium vacancy concentration is found by minimising G:
(U = GOQ) 3)
c, =exp| ——| -
o TP

Nabarro (2) has drawn attention that in tensile solid, the hydrostatic stress
field is homogeneous. Thus the chemical potential is uniform, too, that is the con-
dition of equilibrium and absence of any flow. Though in the solid, there is a va-
cancy flow resulting in diffusional creep. Therefore substitution of the hydrostatic
stress oy by the normal stress o,. was proposed (2). If such comparison is made,
ie.. the flow is proportional to the gradient of chemical potential, the latter must
have the form

u=U,+kTlnc-0.,Q 4)

and the equation for vacancy flow is ( see, e.g., Schmidt (3))

D, D, D,
A =—kT;2grad/1=—c;("2gradc+;—;-gradG:‘ (5)

Thus, in the system being in equilibrium state under the stress field, the spatial
distribution of defects may exist.

From the equations (4)-(5) one can conclude that the knowledge of grain
boundary stress distribution is insufficient to determine the vacancy flow and to
evaluate the void growth and stability. It is necessary to account for spatial distri-
bution of defects, i.e., system fluctuation from local equilibrium.

In analogy to chemical reaction-diffusion processes, the void formation due
to diffusional mechanism is considered as nucleation of a new phase ‘“vacancies’
condensate” in “vacancies’ solution”. Then, we should account for the interface
surface with specific energy . The increase of free energy of the system is
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OF = =RV, - BV, + uon +y,0s (6)
where indexes 1 and 2 mean the void and the lattice respectively.

Since y >0, the void surface tries to approach its minimum area. Therefore
we consider a lattice including N atoms, n vacancies and a spherical void of radius
r. To determine the equilibrium conditions for such system we let &F =0. Taking
the following relationships into account

R=0,5 =0,V +V, = const; &V, = 4zR*4R: OV, =Q0n; & =87RAR
we obtain:

,u:(z}/%?—c(,)ﬂ. (7)

If substitute the equation (2) into the relationship (7), Thomson-Freundlich
equation can be achieved:
In ("‘) g (8)
c R
describing the vacancy supersaturation near the void, that is necessary for system
equilibrium. If let 1 =0 in (7), the equation becomes:

o=y )

This equation is often used to describe the thermodynamical balance in the area
near the void surface ( Speight and Harris (4) and Raj and Ashby (5)). At the same
time the above relationships (9) is the partial cases of the equation (7) and describe
the equilibrium of a two-phase system without imperfections (vacancies).

Analysis of equations (6)-(8) leads to the extension of concept of chemical
potential of vacancies (Cadek (6)):

u=U,+kTInc-o50Q (10)
0, - if the body is considered;
=427y, . 1, .
- ifthe surface of curvature — is considered.
r r

This allows to eliminate some ambiguities related with the existence of near-surface
zone. They will appear only on the stage of evaluation of spatial distribution of
vacancies ¢(7).

The equation (10) shows, that the void will grow only when grad,uLZR %0,
ie., when the system is beyond of the thermodynamic equilibrium state: ,uL 22 0.

Therefore in the model of balance type (Wirthman (7)) it is reasonable to accept
the I1I-rd type boundary condition
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=0 (11)

r=R

5
(“” *a

VOID GROWTH MODEL PROBLEM

The boundary problem for void growth based on the above principles was formed
earlier (1). The grain boundary was assumed to be a plate of a width &, and loaded
by remote normal tension o. The voids are circular holes of radius R in this plate
and are spaced a distance 24 apart at the grain boundary. Because of the
symmetry, only a circular area of diameter 21 can be considered. Similarly to
Wirthman (7), we consider the diffusion equation

a Do a
AT

Unlike Beere and Speight (8), we assume that generation of vacancies as well as
their flow away from the boundary take place along the whole boundary and are
proportional to the stress value and to the chemical potential u respectively:

f(u.0)=Aoc-Bu. (13)
The diffusion of vacancies at r =4 is absent because of the symmetry. Considering
below only the steady state processes, we have a boundary problem:

gz(z(,ﬁ_ﬂ))M(,_Bﬂ:O, (_L@] 2
kT r\a\ & 5, )| _,

oo
By solving this problem we can evaluate the void growth rate V assuming it is
proportional to vacancy flow through the area 27R &, i.e.

27zRD,,5,,[@ j (15)
kT \al)

By substituting the equation y = u - Ao/B into the relationships (14), we transform
them into the linear uniform differential equation

=0. (14)

r=A

V:

(5(2)-
22V -y =0 16
r(c?' g a Y (o)
with boundary conditions (here we assume & = & )
(2_4} Ao (2) o c- BT (17)
a 6,),, B¢, a/,, D,
The solution to the above problem is
¥(r)=al(Cr)+a,K,(Cr) (18)
where
gy = AUK,(CZ)’ = Aol (CA) ’ (19)
BQ BO
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Q=K,(CACS,1,(CR)- I,(CR)]- II(C/l)[C6bK,(CR)+K0(CR)].

Hence we obtain the equation for void growth rate:

- 2R, Ao L(CR)K (CA)- KI(CR)II(CA).

cQ

Taking into account that ¥ = 47R? dR/dt and the C value is of the same order as
1/6 and considering the void size R>106, we may approximate this expression by

dR o

Z_re 21

dt & R’ @D

A, ;
where K = m is a constant, depending on the material properties and

(20)

the temperature. This equation is similar to that of Hull and Rimmer (9), but it
involves nucleation and diffusion of vacancies. Its solution gives a relationship for
the void radius of the form

R=\2Ko(t-1,). (22)

USED SYMBOLS

A, B = empirical coefficients of the function f (,u, o,.. )

¢ = volume fraction of the vacancies |

Dy = vacancy diffusion coefficient at grain boundary (nf/s)

d = grain diameter (m)

S(u,0,...) = the function of vacancy sources and fluxes at grain boundary

Lo,1(x), Ko1(x) = the 0 and 1-t order modified Bessel functions of first and second
type respectively

k = Boltzmann constant J/K)
R =void radius (m)

T'= absolute temperature (K)

1, = the time of void nucleation.

Uy = vacancy nucleation energy (J)
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% = specific void surface energy (J/m’)

O, 0 = grain boundary and surface layer widths respectively (m)
A = distance between voids (m)

4 = chemical potential of vacancies (J)

oo = mean stress (Pa)

0, = stress normal to grain boundary (Pa)

o = remote tensile load (Pa)

Q) = atomic volume (m)
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