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STOCHASTIC MODELING OF FATIGUE DAMAGE PROCESSES IN
METALS

Krzysztof Dolifski"

Random material properties and stochastic nature of many
load processes make the methods of probability theory and
theory of stochastic processes a very useful and rational tool in
modeling of fatigue damage process, in particular in modeling
of the fatigue crack growth. In the paper some results of
stochastic modeling of fatigue crack propagation are presented
to show how such a nondeterministic approach enables us to
estimate a current value of reliability of a structural element
subjected to fatigue while the material parameters are assumed
to be some random variables and the loading is considered as
a stochastic process with all consequences of its irregularity on
the fatigue process.

1. INTRODUCTION

Random nature of material non-homogeneity was always recognized to produce
a scatter of results in fatigue crack growth experiments. Even in very well-
controlled experiments the fatigue damage, in particular the fatigue crack
growth, under deterministic constant amplitude loading is observed to be of
stochastic character, e.g. Virkler et al. (1), Ghonem and Dore (2). It inspires
many researchers to apply the methods of probability theory and theory of
stochastic processes in modeling of the phenomenon.

It is also quite obvious to expect the fatigue process to be of random
character due to loading with stochastically varying amplitudes. Moreover, it is
experimentally well documented, e.g. a review Kumar (3), that load cycles with
single or multiple peak tensile overloads result in retardation of fatigue crack
growth or even in crack arrest. The effects of previous cycles makes the fatigue

“Institute of Fundameqtal Technological Research, Centre of Mechanics
00-049 Warsaw, ul Swigtokrzyska 21, POLAND

43



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

crack growth models to be load history dependent. A current increment of the
crack length or of any other damage parameter depends not only on the actual
load, material parameters and on the actual damage intensity (defined by the
crack length or damage parameter value) but also on some current effects
originated in the past. For randomly varying load amplitudes all load history
effects are random both in time instants of their occurrences and in their
intensity.

It is also evident that due to both randomness of material properties and
stochastic nature of many kinds of real excitations the stochastic approach is the
most appropriate one to model the development of fatigue damage effects.
Moreover, only such an approach allows us to consider the lifetime of a
structural element as a random variable and to estimate the probability of the
structural failure by application of methods of structural reliability analysis.

RANDOM MATERIAL PROPERTIES

Among many experimental results which one can find in the literature on the fa-
tigue crack growth under constant amplitude loading there are only a few that al-
low us to employ evolutionary methods providing an insight into stochastic
nature of the fatigue crack propagation process. The most frequently
investigated results were published in (1) and (2). They were obtained in tests
on 2024-T3 and 7075-T6 aluminum alloy specimens, respectively. It was
explicitly shown that even in well-controlled experiments under constant
amplitude loading the scatter of the results cannot be negligible. The scatter
originates from the randomness of the material properties around the crack tip.
The Virkler and Ghonem-Dore data sets were extensively used to identify all
statistical characteristics of random variables and of the random fields
describing the stochastic material properties and assumed in a stochastic fatigue
crack growth model proposed in Dolinski (4).

The fatigue crack length increment, Aa;, due to the i-th load cycle can be
written in the following general form

Aai = F(ai.S{,S71x) (1)
where a; denotes the current crack length at the moment of application of the i-th
load cycle. The quantities S{ and Sf denote, respectively, the stress maximum
and minimum in the i-th cycle of the far-field stress applied to a cracked
element. The vector X = [X1,X2,...,Xk] represents the material parameters and, in

general, means a sample of the random vector of random material parameters, X
= [X],Xz,...,XK].
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Among a great number of fatigue crack growth laws proposed in the
literature, see e.g. Kocanda (5), there is a very wide class of equations for which

the function F(ai ,SH, St x) can be written as a product

Aa; = g(ai|x)-5(S{,57) @)
Such a form has the well-known fatigue crack growth equation proposed by
Paris and Erdogan (6), Aa; = C-AK™. Since the stress intensity factor range

corresponding to the i-th stress cycle is given by AK; =Y(aj)-AS;-/n-a;j the
functions g(-) and Z(-,-) in the Paris-Erdogan equation take the following forms
g(a) = C-Ym(a)-(Vn-a)m and E(S*,S7)=(S* —S~)M = AS™ with the
coefficient C and the exponent m being some parameters that generally depend
on material and load conditions. The dimensionless function Y(a) depends on
the crack and specimen geometry. Another fatigue crack growth equation, very
often used in application, was proposed in Forman et al. (7), Aa; =
C-AK!/[(1-Ri)-Kg — AK;] where R; = Si /St is the stress cycle asymmetry
parameter and Ky is originally considered as fracture toughness. It is known,
e.g. Tros¢enko & Pokrovskij (8), that the fracture toughness values for
monotonic loading, K., and in fatigue process, Ky, differ from each other and
the latter also depends on the load condition. Introducing consequently a critical
fatigue crack length, at., instead, and defining Ke. = S*-Y(ag)-+/n-ag the
Forman equation can be written in the product form (2) with the functions, g(")
and E(-,-), as follows (subscript “i” omitted)

C-Y(a)-(Vr-a)'
Y(are) Jn-ag - Y(a) Vr-a
B(S*,87) = (s ~57)"" = a1
The Paris-Erdogan and Forman proposals as well as many other fatigue
crack growth equations practically take their origin in fitting of empirical data.
There is however a group of proposals based on theoretical reasoning originated
by mechanical phenomena occurring in the fatigue crack tip neighborhood. In
Doliniski (9) the global/local energy balance approach involving plasticity and

microstructural effects around the fatigue crack tip due to a load cycle was used
in derivation and led to the following equation

pa G4 8K +KE Gy -(aKZy; - AK2)
g
o% (K2 - K2

max,i )

and

g(a) =

-X(ai) 3)

where oy denotes the yield stress of material. Comprehensive statistical analysis
of the Virkler and Ghonem-Dore from (1) and (2) was performed in (4) and

allowed us to specify: C4 = 0, K¢, = S+ ‘Vm-Af. and AKy, = ASeq AT A
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with Ag and Ay, as random variables and to identify all statistical characteristics
of the random material parameters, X = [C2,Afc,Amn]. Hence, the functions g(")
and Z(-,-) in (2) can be written as follows (subscript “i” omitted)

C2-(Y2(a)-a-Au)

C2,At,Ag) = X
g(alC2,Am,Ax) ; ( Y(a)-a) (a)
6% |1-—==
Afc
E(8*,87) = ASZ; = U2(R)-AS? = U2(R)-(S* —s—)z 4)

The subscript “eff” at the stress intensity factor range, AKen, in (3) and,
consequently, at the stress amplitude, AS, in (4) indicates the effective stress
amplitude, AS.4 = S - Sop, where S, denotes the crack opening stress, to be
more relevant to the fatigue process description than the whole stress amplitude,
AS. This substitution follows the Elber observations, Elber (10), who noticed the
fatigue crack closure before reaching S~ by the stress process and delayed crack
opening after the stress minimum. In the literature there is no universal formula
relating S, to load condition and material properties. Most of the proposals are
based on experimental data, see e.g. Bulloch (11), and introduce a function,
q(R), depending on the stress asymmetry ratio, R, so that Sop = q(R)-S*. Among
many proposals the bilinear form

Sop R
4(R) = max{qo [1 + IRol]’R} (5)
suggested by Veers (12) is admitted. The material-dependent parameters, qo and
Ro, remain usually within the following intervals qo e [0.2, 0.5] and
Ro € [-5,-2]. The factor U(R) in (4) reduces the stress cycle, AS, to the effective
one, ASer= U(R)-AS, while U(R) = (1-q(R))/(1-R).

Empirical plots of the crack length, a, versus the number of cycles, N,
show some stochastic fluctuations for every sample. They apparently result from
the stochastic non-homogeneity of material along the crack path. In Dolifski &)
some stochastic fields describing the fluctuations of material properties around
the crack tip were assumed. They led to the stochastic function, X(a), in (3) that
describes the effect of stochastic material non-homogeneity on local fluctuations
of the fatigue crack growth rate. The stochastic properties of these fields and
eventually of the function X(a) were completely identified for the Virkler and
Ghonem-Dore results. The effect of stochastic material non-homogeneity on
probabilistic characteristics of lifetime estimates decreases very quickly with
increasing size of the admissible increment and may be often neglected in
engineering applications, i.e. X(a) = 1.

46



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

STOCHASTIC LOADING

Fatigue damage process due to variable amplitude loading is subjected to some
load history effects resulting in retardation of fatigue growth after overloads.
The physical nature of this phenomenon has not been completely explained, yet.
Among various mechanisms involved the plasticity-induced fatigue crack
closure is generally considered as a dominant cause of the retardation in Mode I
of fatigue crack growth, Shin & Fleck (13). Most of the models proposed in the
literature to predict the fatigue crack growth with regard to the load sequence
effects refer to the overload-induced plastic zone and a diminution of the
effective stress intensity factor range after an overload, see e.g.
Wanhill & Schijve (14). Such an approach was also applied in modeling of
fatigue crack growth under stochastic loading in Ditlevsen & Sobczyk (15),
Dolinski (16), Veers (12), Veers et al. (17). Mathematical tools and solution
methods differ, however, substantially in the quoted papers. Birth process,
averaged load characteristics, diffusion Markov process, numerical simulation
were there, respectively, used in derivation of statistical characteristics of the
structural lifetime when a critical fatigue macrocrack length defines the
structural failure due to stochastic loading. In the present paper a mixed,
partially  numerical, partially  analytical approach  proposed in
Dolinski & Colombi (18) is presented. It allows us to derive the lifetime
probability distribution with account for retardation effects due to stochastic
loading as well as for random material properties.

Following the Willenborg model, c.f, Willenborg et al. (19), the reduction
of the fatigue crack growth rate after an overload, Sol, OCcurring at a = a,; is
associated with the stress, s,, called the reset stress, necessary to create a plastic
zone of range ry(a,s;) that would reach the boundary of the overload-induced
plastic zone, ry(ag,se). The reset stress is calculated from the equality
Aol F Iy(a01,S01) = a + ry(a,s;), where a is the current crack length, and is given as

follows
oy ol ¥-Y2(aor) s
St =8r(a01,a;80]) = S l+# -1 6)
y-Y(a) a oy

Large compressive stresses around the fatigue crack tip after unloading
associated with the large overload-induced plastic zone hinders the crack
opening due to the subsequent stress cycles. The opening stresses corresponding
with the post-overload maxima transitorily increase while the current plastic
zones move within the overload-induced one. In order to specify the retardation
intensity Veers in (12) assumed the augmented opening stress, Sy, to be equal
to Sopr = (s/S")-Syp, where Sep = q(R):S" denotes the opening  stress
corresponding with the current stress cycle (S,S") (without retardation effects).
Considering the effective amplitude, AS., relevant to the fatigue process as a
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difference between the stress maximum and the effective minimum, ASeir =S -
Seir , the latter is explicitly defined as follows

Sarr = Sar (2,578 |aol515) =

q(R)-S* if s, <S*and S— <S*
=41q(R)-sr(alaol,So1) if q(R)-s; <S* <, (7
‘S* if q(R)-s; >S* or S~ > S+

Introducing the reset stress, s,(alao,So), as a variable governing the
retardation effects and depending on the current crack length, a, on the crack
length, a,, at the time of application of the last overload, s,;, and on the overload
value itself we loose a very convenient product form property of the fatigue
crack growth equation as given in (2). The crack length increment, Aa;, due to a
single stress cycle application has to be written as follows

Aa; = g(ailx)-E(S},S7;5r(ailao,so1)) (8
The phenomenon of fatigue crack growth retardation introduces a memory
effect. It excludes a separation of variables allowing for definition of any
damage parameter, I', depending on the load process alone and satisfying the
Palgrem-Miner hypothesis on linear accumulation of damage. Thus, an involved
cycle-by-cycle incremental analysis has to be always performed to determine the
development of damage and, eventually, the fatigue crack length due to variable-
amplitude loading. Such a time consuming procedure is apparently impractical
for stochastic loading for which any load path is only a sample of a stochastic
process. The entirely incremental approach to complete statistical information
about stochastic behavior of the fatigue process adequate for reliability analysis,
eventually, would require extensive numerical simulation. Some features of the
fatigue crack growth retardation phenomenon under stochastic loading and some
statistical properties of extremes of stochastic processes can be, however, used
to significantly simplify and restrict the numerical simulation that furthermore,
provides some initial but sufficient data to continue the probabilistic analysis
analytically.

Simulation procedure

Considering the fatigue loading as a stochastic process it is easily seen that
the retardation phase of the fatigue crack growth may be initialized by any
random maximum provided that it is greater than the current reset stress and
followed by lower maxima. This overload maximum starts a retardation phase
which continues as long as the current reset stress is not violated. If this
condition is not satisfied for a maximum then this maximum can be the next
overload or it can start a post-retardation phase which will continue as long as
any subsequent maximum is not lower than the previous one. If the condition for
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continuation of the post-retardation phase is not satisfied for a maximum then
this maximum is assumed to start the next retardation phase. This scheme can be
extended on the whole fatigue crack propagation process which appears to
alternately consist of retardation and post-retardation phases. The couples of
these successive phases are considered as blocks starting and terminating with
overloads.

Extremes of the stress process are the only load parameters involved in
fatigue crack growth equations. Therefore, just their probabilistic characteristics
are desired to predict the structural lifetime due to the macrocrack propagation.
A full stochastic description of sequence of extremes is not available except very
specific cases of stochastic processes. Recently Frendahl & Rychlik (20) have
shown on a very wide numerical simulation basis that a homogeneous Markov
chain is a very good approximation of the random sequence of extremes of
stationary Gaussian and non-Gaussian processes with various spectral
characteristics and proposed a numerical procedure to derive the transition
probability density function of extremes. Any homogeneous Markovian
sequence, [Sy] = [S,,Sz,...], is fully described by a transition probability density
function p(sk/sk.1) of any current term of the sequence, e.g. Sy, given the last
previous term Sy_; = sy.;. Since analytical derivation of stochastic process is, in
general, hardly possible a numerical procedure proposed in (20) is applied.

The Markov property of stress extremes and the retardation+post-
retardation block structure of fatigue growth process allows us to apply a simple
numerical simulation scheme to estimate the probabilistic properties of all
variables that describe the fatigue features within a block, in particular the joint
probability density function Pgyy,(bi,njae,x) of the retardation+post-
retardation block length, B(ay,x), and number of cycles within the block,
Na(ao1,X), given a = aq and X = x. This joint probability density function allows
us to calculate the statistical moments of B(ao1,x) and Np(a,,x) that appears to be
sufficient to proceed with lifetime calculation.

Cycles to failure

We introduce a damage parameter, ['(Ng|a,;,X), corresponding with the
block length B(a,x)

a1 +B(a,1,x)
da Ng(aq1,Xx)
I'(Nglaor,x) = = D AT(Si,S&saq|ac) &)
g(alx) n=1

Aol
Its statistical moments appear practically constant and independent of a and x,

i.e. F—k(ao[,x) =Tk =const, so that the number of cycles to failure when the

crack, initially of the length ay, reaches its critical size, af, can be calculated
from the following equation
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Foda M@
YF(X)=7(30,3F|X):J ~ YT
gax) 5
ao

where the subscript "m", m = 1,2,..,M(x), numbers the retardation+post-
retardation blocks to failure. The number of blocks, Mg(x), is a random variable
with probability distribution approaching, for the sufficiently great mean,

Mgr(x) = yr(x)/T, to the inverse Gaussian one and having the variance
o3, (x) = vZ -Mg(x), where vr = or /T . The total number of cycles to

failure, Ng(x), given X = x is a sum of Mg(x) independent random numbers of
cycles, Np, within blocks. The central limit theorem modified by Renyi (21) for
a sum of a random number of random variables may also be applied to its
probability distribution resulting in

Fn; (n;x) = P[NFp(x) < n ~ @) B—Mz(x) Ny (10)

oNg (X)

where the variance of Ng(x) is given as follows

— —2 X —2

O'%JF x)= Mp(x)-c%IB +¢:$%,1F (x)-Np~ = Y(f)(c%*ls +Vvi(x)-Np ) (11)

Time to failure

For a stochastic process the number of cycles, Ny(nlt), within a given time
interval, [0,t], can be approximated by a Gaussian random with the mean,

N_;‘(t) = v* -t, and variance, o';{ (t) = Sy -t+ St , both linearly dependent of

time for great t. The mean rate of maxima, v*, and coefficients S% and S§; can

be derived from spectral density of stochastic load process or from its empirical
samples. The probability distribution of time to failure given X = x is calculated
as follows

Fr, (tx) = P[Ts < tx] = [ Fr, (tin)- fy, (nfx) dn =

=1 [Fy, (0lt)- iy (nlx) dn =

i [gnNo] n—M—F(x)-N_B}dnz
on (1) | onNg (%) oNg (X)
_ o Ne()-Mr(x)-Ng
\[0'%,' 1)+ G%‘Ir (x)

(12)
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The probability (12) has got the form similar to the so-called Birnbaum-
Saunders probability distribution. Depending on the dimension, K, of the
material parameter vector X = [X;,X,,..,Xk] the unconditional probability
distribution of the lifetime can be calculated by direct integration

Fry (t) = [ Fr (fx)- fx(x) dx (13)
-
where fx(x) denotes the probability density function of the parameter vector X or
by employing some approximate methods of reliability analysis involving a
search for design points, first and second order reliability method, importance
sampling, say.

CONCLUSIONS

The division of the fatigue growth process into blocks and Markov assumption
about the sequence of extremes of the loading process shorten the simulation
procedure providing all necessary parameters involved in the lifetime
probability distribution. The load sequence effects as well as the random
material properties are taken into account. The approach allows us also to
account for load sequence effects in fatigue damage process due some trains of
random cycles resulting from some stochastic extreme excitations of random
duration and randomly occurring during the structural seervice time.
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