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NONLOCAL STRESS FIELD IN AN ORTHOTROPIC PLATE WITH A
SLANTED CRACK

P.J. Berbinau®

We investigate within the framework of nonlocal elasticity the
stress field of a unidirectional composite plate containing a crack
orthogonal to the fibers direction, oriented at a given angle with
the loading direction. The theory of nonlocal elasticity comprises
the discrete nature of the material, and predicts a finite stress field
at the crack tip. The anisotropic nature of the problem requires the
use of a non-isotropic influence function that takes into account
the fibers spacing. Results obtained are compared with results
from classical elasticity, specifically the crack propagation
direction as a function of the initial crack orientation. Of particular
interest in the present work is the distance from the crack tip
where the hoop stress is maximum, distance which cannot be
predicted by classical elasticity. Extension of this work to cracks
neither orthogonal nor parallel to the fibers direction is also
discussed.

INTRODUCTION

The theory of classical elasticity, when applied to bodies containing a crack, gives

stresses O, 0, and T, that vary as the inverse square root of r where r is the
distance to the crack tip. This implies that no matter how small the remotely applied
stress is, the resulting stress field at the crack tip is infinite. The existence of this
singularity remains a pitfall of classical elasticity. Unlike classical elasticity, the
theory of nonlocal elasticity, developed by Eringen [1] following work from Kroner
(2] and Kunin [3], takes into account the discrete nature of matter and incorporates
the fact that forces among atoms are long-range ones. When applied to fracture
mechanics, nonlocal elasticity theory predicts a finite stress field at the crack tip.
Indeed, nonlocal effects become dominant at the crack tip since its characteristic
dimension is on the order of an interatomic distance. This explains the breakdown
of classical theories. Nonlocal elasticity has been applied to mode I [4,5], mode II
(6], mixed-mode I-11 |7], and mode III [8] loadings by Eringen in the case of
isotropic materials. In this paper, we extend this analysis to anisotropic materials
and investigate the nonlocal stress field in a unidirectional composite plate
containing a crack orthogonal to the fibers direction, oriented at an angle varying
from 0° to 90° with the loading direction. We then compare our results with results
from classical elasticity [9].
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THE NONLOCAL ELASTICITY THEORY

We model the unidirectional fibers composite as an anisotropic linear elastic solid
which will be considered homogeneous as a first approximation. Body forces are
neglected and the problem is treated as a static one. The fundamental equations of
nonlocal elasticity [1] are then given by equations (1-4), where (T, T')are the
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position vectors, O is the local stress tensor, t is the nonlocal stress tensor, e is the

strain tensor, 1 is the displacement vector, Cyjmn 1S the anisotropic stiffness matrix,
and (k,1,m,n) are indices for the three cartesian directions (X,y .z). Equations (2) are

the nonlocal constitutive equations. The attenuation function o lf’ - ?l) characterizes
the behavior of the material, and as such should be representative of the material
inner structure. For metallic materials for instance, atomic interactions decrease
rapidly beyond the interatomic distance b, which leads to the concept of an influence
region R of radius b around a point at T. The attenuation function should be such
that the dispersion curves obtained from the propagation of plane waves according
to the displacement field equations (1-4) match the Born-Kéarmén lattice dynamics
dispersion curves [6]. In order to be consistent, the nonlocal theory must also revert
to the classical elasticity theory when b goes to 0, which is equivalent to having o
revert to the delta Dirac distribution in the classical case. In addition the attenuation
function must obviously be maximum at 7'=7, and be normalized. Furthermore
Bazant [ 10] pointed out that the Fourier transform of the attenuation function must
be strictly positive. Acceptable functions include the normal distribution derived
from one dimensional lattice dynamics and already been used by Eringen in the
study of mode II [6] and mode 111 [7] fractures. In a subsequent study of mode I
fracture [5], Eringen refined the theory by considering two dimensional lattice
dynamics, and derived the following attenuation function:
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where Kg is the modified Bessel function of the second kind of order zero, and f is
a coefficient on the order of b that characterizes the attenuation. In the case of a
unidirectional composite, we have two preferred directions, longitudinal (fibers
direction) and transverse, hence our medium is orthotropic. Since we consider a
crack along the (X) axis orthogonal to the fibers, we modify the influence function
(5) as in (6). The orthotropic properties of the composite are modeled by

considering two different attenuation coefficients B, and B, for the longitudinal
(fiber) and transverse directions respectively. The attenuation function given by (6)
has a strictly positive Fourier transform, is normalized and reverts to the delta Dirac
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distribution in the classical case [11]. Substituting equations (2), (3) and (4) into
equation (1) and using the Green-Gauss theorem leads to the field equations (7).

[l 7D =) vy (] ()

([ T Com€nmn (F')} -day (7) = 0

)

PLATE WITH SLANTED CRACK UNDER TENSION

The geometry for the problem studied herein is shown on Figure 1. The angle y

defines the crack initial orientation from the loading axis, and the angle 0 defines the
crack propagation direction from the crack initial axis. It will prove more convenient
for the handling of boundary conditions to treat the problem in reference axes
aligned with the crack. We thus perform an axis transformation from the loading
axes (i,,yl) to the crack axes (X,¥). Our initial boundary value problem now
becomes the one of an infinite plate with a crack that is uniformly loaded in shear

. 0 0 s i
and tension by stresses o, and T,, given by (8):
o O

o), = 2“ (l = cos(2y)) and T, = %sin(Zy) 8)

The associated
boundary

.- ) _ I 2 2
conditions are: u=uy=u; — 0 and v=uy=up — 0 when /x* +y® — @

We consider the case of plane strain, hence u;=0.

tyy(x,O) =- Ogy and txy(x,O) =] —t‘:y for Ixl<a

Using the properties of the stress field and the linearity of the nonlocal equations,
we can transform equations (7) into a system of partial differential equations for the
displacements (u,v), and then prove that these equations together with the boundary
conditions are equivalent to solving the classical elasticity problem [11]. The
displacement field in classical and nonlocal elasticity are therefore identical, and we
may use the classical stresses oy in equations (2) for the calculation of the nonlocal

stresses ty. The classical stress field oy has been calculated and may be found in
[9]. The nonlocal stresses tyy, tyy and ty, are then, from relations (2), given by
double integrals over the two space variables (x',y"). This renders their calculation
by a numerical method very unreliable, especially for values of the attenuation
coefficients B and B within the range of matrix (polymer or metallic) micro-
structural length and fiber spacing respectively. It is nevertheless possible to obtain

the nonlocal stresses under the form of a single integral over the phase variable § of
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a Fourier transform as a function of space coefficients (x,y), with B and B, crack
length, material constants, and loading amplitude and angle as the only parameters
[11]. They are given in condensed form by equations (9). The algebraic functions

K!, K 6 K., K., K}, K] maybefoundin [11]. This allows the calculation
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of nonlocal stresses for various values of the parameters. Our solution is valid only
in the vicinity of the crack tip since the relations giving the classical stresses [9] are
valid only for Ixl and lyl small before the crack length.
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CRACK PROPAGATION DIRECTION

Numerical calculation of the indefinite integrals was done using the "Mathcad"
software. Typical materials properties for a carbon/epoxy composite were taken
from [9] and are given in Table 1, along with the loading parameters. The transverse
attenuation coefficient B was chosen on the order of the distance between fibers,
which is around (0.001-a ) for a 60% fiber volume fraction, a being the half crack
length. The longitudinal attenuation coefficient B was chosen as (a 10°9),
corresponding to an interaction on the order of a few intermolecular or interatomic
distances. To obtain the distance from the crack tip where the hoop stress is
maximum, and the crack propagation direction, we first calculate the ratio Ry of

the nonlocal hoop stress tgg to the hoop fracture strength Sgg. Following [9], we
define the hoop fracture strength by equation (10), where Sy and Sy are the fracture

strength along the X (transverse) and y (fiber) directions respectively. Their values
are taken from [9] and given in Table 1.

Sgg = Sx-cos(8)? + Sy-sin(8)? (10)

TABLE 1. Loading and materials parameters

E, (Pa) | E, (Pa) | Gjp (Pa) | vy [Vo3]a(em)| ¥ o, (Pa) | Sy (Pa) S, (Pa)
7010° | 11-102| 5.65-10% | 0.24 | 0.3 1.25 | 45°| 7-10% 1.5-109 | 43.8-10°

Figure 3 gives the ratio Ry as a function of the angle 0 at the two characteristic
distances By and Bp. On the same graph is plotted the ratio Ry of the local hoop
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stress Ogg to the hoop fracture strength Sgg at the distance By. Nonlocal theory is
in agreement with the classical theory and gives a propagation angle of 6,=270° for
a loading angle of y=45°. This corresponds to a propagation along the fibers as
expected [9]. The angle 6, does not vary with the distance from the crack tip. Plots
of Ryy_for other loading angles y between 0° and 90° also give a propagation angle

8, of 270°. Examination of the ratio Ry, at 8 as a function of r shown in Figure 2
clearly shows that the maximum hoop stress occurs not at the crack tip, but at a

distance D equal to 7.8 times the influence length By . Figure 4 gives the distance D
as a function of the loading angle y in units of 8 . We notice that the distance D

varies little, from (8.3)By, at 0° to (6.4)By, at 82.5°. This distance could not be
predicted using classical theories since they do not comprise a length scaling.

CONCLUSION

The stress field in an orthotropic plate loaded along the fiber direction with a tensile
normal and shear components has been investigated in the context of the nonlocal
theory of elasticity. Results give predictions of the propagating angle which are in
excellent agreement with the classical theory of elasticity and with experiments. A
new feature brought forward by the nonlocal theory is the prediction of the distance
at which the hoop stress is maximum in the direction of propagation. This distance
is on the order of 8 times the characteristic microstructural length of the matrix. It
would be interesting to extend this limited study to the general case of orthotropic
plates with a crack at any angle from the fibers direction, and to compare it to both
the classical results and experiments on composite materials. This general case
however raises further mathematical difficulties for the calculation of the stress field.
It will be investigated in a future work by the author. Even though nonlocal theory
as used in this article models composite materials as homogeneous, and thus does
not differentiate between matrix and fibers, it still constitutes an enticing alternative
to the simpler classical theories. It is a first step in the right direction as it
incorporates the fibers spacing. Nonlocal theories are however not limited to the
treatment of homogeneous cases, and can be used to analyze a material with space-
varying mechanical properties, even though such refinement is expected to lead to
mathematical intricacies. In addition, when the crack is not aligned with one of the
composite principal directions, crack surface displacement coupling occurs, and
may cause crack closure [12]. This is an issue which has been overlooked by all
previous papers on the modeling of crack propagation in composite plate (using
classical elasticity), and which would need to be addressed.
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Figure 3. Nonlocal and local hoop stress Figure 4. Normalized distance D vs.
loading angle.

182




