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FRACTURE INSTABILITIES AND SCALE EFFECTS IN BRITTLE
SOLIDS AND BRITTLE MATRIX FIBROUS COMPOSITES

A. Carpinteri” and R. Massabo'

The structural behavior of quasi-brittle materials and brittle-
matrix composites ranges from stable to unstable depending on
material properties, structure geometry, loading condition and
external constrains. In this paper the fracture behavior of a
composite characterized by a bilinear cohesive law is analyzed
by means of a cohesive-crack model and a bridged-crack model.
It is shown that the complex changes in the shape of the load-
deflection curve for a three-point bending beam are controlled
by two dimensionless parameters. The first, Sg=Gp/c,h, depends
on the beam depth, 4, and on the composite fracture toughness,
Gr» and tensile strength, o,. The second, G/ Gy » 1s the ratio of
the energy necessary to develop the bridging mechanism of the
secondary phases, G, to the intrinsic fracture energy of the

matrix, Gy.. It fundamentally depends on the shape of the
cohesive law.

INTRODUCTION

The structural response of quasi-brittle materials and brittle matrix composites is
not physically similar when the size scale of the body is varied. The nature of the
crack and the structure behavior can range from stable to unstable depending on
material properties, structure geometry, loading condition and external constrains.
The two limiting solutions, given by Linear Elastic Fracture Mechanics and by the
perfectly plastic limit analysis may be used only for extremely brittle cases (low
fracture toughness, high tensile strength, large sized structures, initially uncracked
specimens) and for extremely ductile cases, respectively.

This complex behavior arises due to the existence of inhomogeneities (voids,
flaws, coarse grains, particles, aggregates, fibers,...) in the brittle matrix. These
inhomogeneities control the crack propagation process, acting both in the wake of
the macrocracks, where they bridge the faces of the crack, and ahead of the
macrocracks, where they give rise to a microcracked process zone.
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In accordance with the model proposed by Barenblatt (1), the process zone is
represented by a fictitious crack, and the bridging mechanisms by a distribution of
closing tractions, c. A relation o(w) links the closing tractions to the crack face
opening, w. Three parameters characterize this relation and the bridging
mechanisms of different composites: the shape of the law, the maximum traction,
6, and the critical crack opening, w,, beyond which the closing tractions vanish.

The toughness peculiar to the matrix can be modeled as an intrinsic fracture
energy’', Gr» and the crack tip stress field assumed to be singular. These
assumptions define the bridged-crack model, and imply that the closing tractions
are related only to the secondary phases of the composite. The area beneath the

bridging law is the energy necessary to develop the bridging mechanism, G

On the other hand, the crack tip stress field can be assumed to be finite, and the
closing tractions to represent the homogenized composite, in accordance to the
cohesive-crack model. The area beneath the cohesive law represents the composite
fracture energy, G, i.e., the energy necessary to produce a unit crack surface. Note
that Gz= G+ G- (see Cox and Marshall (2) for a review of the models).

Bridging mechanisms operating at very different scales are modeled based on
these assumptions. In the modeling of the atomic bonds the orders of ma;mtude of
the two parameters of the cohesive law are ~10 MPa and w,~10" pm; the
brldgmg law of carbon ﬁbers pulling-out from a ceramic matrix is characterlzed by

~10 MPa and w.~10' um, and that of ductile particles by 6,~10" MPa and
o 10! pm; the cohesive law of a concrete is defined by o-u~10 MPa and W, 10"
mm, and if the concrete matrix is reinforced with steel fibers, by w, ~10" mm.

The size of the bridged zone of a crack propagating in small-scale bridging (the
LEFM condition), in an uniformly loaded infinite medium, gives a first indication
of the behavior expected in fracture. For a rectilinear cohesive law and a vanishing
intrinsic fracture toughness, Gy. =0, this length scale is given by a,=(n/8)w.E/c,
E being the composite Young’s modulus, Bilby et al. (3). For different cohesive
laws the factor /8 changes, but it remains of the same order of magnitude, Smith
(4). Note that a, coincides with the plastic zone size of Dugdale’s model (5), and
that is proportlonal to Hillerborg’s characteristic length, /,,=w.E/c’, (6). If the
matrix fracture toughness is nonvanishing, Gj.#0, the brldged zone size, a;,
progressively decreases for decreasing values of the ratio Gy/G., Cox and
Marshall (2).

Comparing the order of magnitude of a, and the width 4 of a finite specimen,
indicates whether the crack will approach the small-scale bridging limit
configuration, a,«h, or it will propagate under large-scale bridging conditions,
a,~h. In the first case the problem can be studied by means of LEFM, while in the

" or equivalently as a critical crack tip stress intensity factor, Ky. =(Gy. E)*°, E being the
composite Young’s modulus.
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second case detailed calculations are required, and the behavior will be strongly
affected by the geometry and the external loading. If this is the situation, a
complete and unitary description of the behavior of brittle matrix composites, must
rely on parameters characterizing the structure and not only the material.

Based on the assumptions of the cohesive-crack model, Carpinteri (7) defined
a dimensionless parameter, which synthetically controls the fracture behavior of
clasto-softening materials and the size-scale transition from ductile to brittle
response of self similar structures. This parameter, called the brittleness number,
Sg=Gr/o,h, depends on both the material properties and the structure dimensions
(see also Bosco and Carpinteri (8)).

For a linear softening cohesive law, it has been shown that the flexural behavior
of a beam varies from ductile to brittle when sp decreases. A truly brittle failure,
and the classical LEFM instability, are found if Sg=Gro,h—0, i.e., for low fracture
toughness, high tensile strength and/or large structure size-scales. A high
slenderness and the absence of initial notches favour this behavior.

If the composite material is characterized by a nonvanishing intrinsic fracture
toughness, Gy #0, the ratio G/, along with sg and the shape of the bridging
law, govern the structural behavior. Different size-scale transitions are found
depending on G,/ G., Carpinteri and Massabo (9).

In this paper a nonlinear fracture mechanics model, formulated by the authors
for the analysis of brittle-matrix composites with uniformly distributed
reinforcement, is briefly recalled, Carpinteri and Massabo (10). The two
assumptions, of a vanishing and a nonvanishing crack tip stress intensity factor
(cohesive-crack and bridged-crack ), are examined in the simulation of the fracture
behavior of a Three-Point Bending beam. A bilinear cohesive law is assumed to
describe brittle-matrix composites with secondary phases pulling-out from the
matrix. The influence of the ratio G,/G" on the size-scale effects is studied, and
the limitations on the applicability of the bridged-crack model to structural
analyses are highlighted.

THE THEORETICAL MODEL

Consider the schematic description of the cracked cross section of a composite
beam, subjected to a bending moment M, and shown in Fig.1.a. The beam depth
and thickness are 4 and b, and the crack length is a. In accordance with
Barenblatt’s model (1), a fictitious crack, of length a;; acted upon by a continuous
distribution of closing tractions, o, represents the composite process zone. An
assigned relationship, o(w), links the closing tractions to the crack opening
displacements, w. The maximum traction and the critical crack opening are G, and
W, respectively. The matrix is assumed to be linear-elastic, and reference is made
to the two-dimensional single-edge notched-strip solutions, Tada et al. (11), to
define the fracture mechanics parameters.
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The constitutive flexural relationship, which characterizes the mechanical
response of the component, is evaluated by following the evolution of the crack up
to the total disconnection of the beam.

At the tip of the crack a global stress intensity factor, K=K +Kjs, is defined
by means of the superposition principle. Ky and K, are the stress intensity factors
due to the applied bending moment, M, and to the closing tractions, o,
respectively.

The two assumptions of a singular and a finite crack tip stress field, previously
outlined in the introduction, are examined, and two different crack growth criteria
are consequently applied. In accordance with the bridged-crack model, the crack
tip stress field is singular, and the crack growth criterion states K= K., where
K. is the matrix intrinsic fracture toughness. In this case the closing tractions
represent the bridging mechanisms developed by the secondary phases (bridging
tractions). On the other hand, in accordance with the cohesive-crack model, the
stress field in the crack tip vicinity is finite, and the crack growth criterion states
K;=0. The closing tractions represent the combined restraining action of the matrix

and the secondary phases on crack propagation (cohesive tractions).

By means of the crack propagation criteria, the crack-propagation moment, Mg,
is derived for each crack length, and the corresponding localized rotation, @, is
calculated using Clapeyron's Theorem. If 5, and h are chosen as the basic set of
dimensionally independent variables, the nondimensional forms of the crack-
propagation moment and the corresponding rotation are:
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where &=a/h and &,=a/h are the normalized lengths of the crack and the traction-
free crack (Fig.1), and Yy and Y are polynomial functions related to the geometry
of the specimen. The parameter K takes on the form:

K= i( ‘ ) | )
e, \1+ G,/ Gic
where G, is the area beneath the bridging curve, G is the matrix intrinsic fracture
energy, Sg=Gr/C.h is the brittleness number, Gr being the composite fracture
energy, and €, the ultimate elastic strain of the composite. Note that K=0 if G}.=0
(cohesive-crack model).
Egs. (1) and (2) define a nonlinear statically indeterminate problem, the
indeterminate closing tractions, o(w), depending on the unknown crack opening
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displacements, w. A numerical model has been formulated to evaluate the beam
configuration satisfying both equilibrium condition and kinematics compatibility.

The analytical formulation brings out that, once fixed the shape of the bridging
or cohesive law, the constitutive flexural behavior of self similar beams is
governed by a different number of nondimensional parameters, depending on
which of the two models is applied. For the assumed basic set of variables, the two
dimensionless parameters of the bridged-crack model are s;/e, and Gy G-, while
the sole dimensionless parameter of the cohesive-crack model is s/e,.

SCALING TRANSITIONS IN BRITTLE-MATRIX COMPOSITES

The analysis of a brittle matrix composite by means of the cohesive-crack model
(vanishing stress intensity factor) requires the definition of the cohesive law, o(w),
representing the homogenized material. This law is inferred from experimental
measurements or from micromechanical modeling.

The bilinear law shown in Fig.1.b is a simple and representative approximation
to the cohesive law of various composites. Depending on the location of the knee
point, k(Bw.,ac,), brittle matrices reinforced with short fibers, hard or ductile
particles or aggregates, are represented. The area beneath the curve defines the
composite fracture energy, Gr. The first and the second branch of the curve
describe the bridging mechanisms peculiar to the matrix and developed by the
fibers, respectively.

An alternative approach to study the fracture behavior of brittle-matrix
composites, characterized by a bilinear cohesive law, is the application of the
bridged-crack model (nonvanishing stress intensity factor). In this case, the energy
dissipated in the first part of the cohesive law, which is usually small in relation to
the total, is lumped into an intrinsic fracture energy, G.. The matrix is assumed to
be perfectly brittle, and the bridging mechanism of the secondary phases is
described by the linear bridging law shown in Fig.1.c. The area beneath the curve,
Gp» represents the contribution of the reinforcement to the composite fracture
energy, G/=Gy+G,.. Based on these assumptions, the ratio G,/Gr is kept
unchanged so that one of the two dimensionless parameters of the model is fixed.

The two theoretical models may converge or diverge in the results, depending
on the properties of the material and the size of the structure.

Consider a composite characterized by a cohesive law with a=0.2 and p=0.001.
This law approximates the behavior of a cementitious composite reinforced with
short steel fibers, Carpinteri and Massabo (10). Note that the energy dissipated in
the first portion of the law is very small with respect to the total, and G,/ Gj. ~250.

A Three-Point Bending beam, of depth 4, thickness b, length /=6, is analyzed
by means of the two models. An ultimate elastic tensile strain £,=1.5x10™ is
assumed. The evolution of crack propagation from an initial notch, a,=0.14, up to
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a=0.9h, is studied. The flexural response of the beam, in terms of dimensionless
load, Pl/cs,,hzb, versus normalized mid-span deflection, &/h, is controlled by the
brittleness number s;=Gg/c,h. The dimensionless curves of Fig.2, describe
variations of sz over four orders of magnitude.

When s;—0 the models predict the classical LEFM snap-back instability. The
smallest sp here examined, Sg =3x10'6, defines a transitional configuration, with a
strain softening branch whose slope is nearly infinite. In the range of sg varying
from s;=3x10" to sE=3x10'4, the behavior changes from strain-softening to strain-
hardening. The response is almost perfectly plastic for s5=2x10'3, and then, for sg
varying from s,;=2><10'3 to sE=6x104, it turns again strain-softening, and a loading
capacity higher than the ultimate loading capacity at total disconnection is
predicted (hyper-strength phenomenon).

Over the examined range of sg, the bridged-crack model and the cohesive-crack
model predict approximately the same results. For higher values of s the results
diverge (see sE=3x10'2). The cohesive-crack model predicts a progressive
transition towards ductile responses and the plastic collapse. The behavior is
similar to that predicted for a linear softening law, Carpinteri (7). On the other
hand, the bridged-crack model predicts strain-softening responses, and the loading
capacity of the beam is defined by the LEFM solution for a notch of depth a,and a
fracture energy Gy - )

This inconsistency is explained by the fact that the behavior over the last range
of si is strongly matrix dominated, and the influence of the fibers decreases by
increasing sz The bridged-crack model assumption of a perfectly brittle matrix, is
not valid anymore, and a proper modeling of the bridging mechanisms peculiar to
the matrix is necessary. This result confirms the well known conclusion that LEFM
is not applicable for the description of quasi-brittle materials, for high fracture
toughness, low tensile strength or small sized structures.

Note that the value of s for which the model results start diverging depends on
both the initial notch length and the location of the knee point in the cohesive law.
In the limit case of an unotched material, the bridged crack model predicts an
unrealistic infinite loading capacity.

The nature of crack propagation changes according to the variations in sg. For
sg—0 the crack propagates in small-scale bridging, and the response is controlled
by the composite fracture energy G, through the LEFM solution. For the
intermediate values of sg (diagrams a-d) the crack propagates in large scale
bridging, and the behavior is controlled by the shape of the last branch of the
cohesive law (bridging mechanisms of the reinforcement). For higher values of sg,
the crack propagates in large-scale bridging and it is fully crossed by the fibers up
to total disconnection of the beam. The behavior is essentially controlled by the

shape of the first branch of the cohesive law (bridging mechanism of the matrix).
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The three curves for s;=6x107, sp=2x107, and SE=3><10'4, illustrate the
flexural responses usually observed from experimental tests on fiber reinforced
cementitious materials. Consider for instance a fiber-reinforced concrete,
characterized by o,=6Mpa, w.=8mm, Gr.=0.02Nmm™, and Gr=4.8Nmm’™". The
three previously mentioned curves would describe the behavior of three beams of
depths A=130mm, h=400mm, and h=2600mm, respectively. Note that the two
theoretical models predict similar behavior over this interval of Sg.

Consider now a cohesive law with «=0.15 and p=0.1. This law is used to
represent a quasi-brittle material, e.g., plain concrete. Due to the different location
of the knee point, the energy dissipated in the first portion of the law is very similar
to the total, and G,/ G- ~2.

The diagrams of Fig.3 show the dimensionless load-vs.-deflection curves
obtained for a three-point bendinﬁ beam, with the same geometry of the previously
examined beam, and g,=1x10”, when the parameter s; is varied. The curve
corresponding to the lowest s, is characterized by a snap-back instability, with a
softening branch of positive slope.

The cohesive-crack model predicts flexural responses typical of a quasi brittle
material. The behavior changes from stable to unstable by decreasing sz The
bridged crack model predicts similar results for s lower than sE=3><10'5, but again,
for higher values of s, the results diverge and the inapplicability of the model is
manifest.

Consider a concrete characterized by gp=0.1Nmm'1, c,=5Mpa and
w,=0.16mm. The three curves for s;=3x107, 55=9x10, and s=3x10", would
represent the behavior of three beams of depths h=70mm, h=220mm, and
h=650mm, respectively. The assumption of lumping the energy dissipated in the
first part of the cohesive law into an intrinsic fracture energy G2, is therefore
unacceptable in the simulation of experimental tests on quasi-brittle materials.

It is worth noticing that the diagrams of Fig.3 do not show the intermediate
brittle to ductile transition, previously observed in Fig.2 for sE=3><10'6+2x10'3,
which is typical of fibrous composites. This behavior is a consequence of the lower
value assumed by the ratio G,/Gy. (see Carpinteri and Massabod 9), for a
description of this behavior in a composite with a rectilinear bridging law).

CONCLUSIONS

The flexural behavior of fibrous brittle-matrix composites depends on the size-
scale of the structure, besides the fracture toughness and the tensile strength of the
material, through the parameter s,=G/c,h. A transition from brittle to ductile
responses is predicted when the brittleness number s is increased.

A second parameter, which governs the structural behavior, is the ratio G/ Gre»
between the contribution of the reinforcement, Gy, and
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matrix, G, to the global fracture energy of the composite, G If the brittleness
number s is kept unchanged, more ductile responses are predicted by increasing
Gy/Gr- A low matrix fracture toughness and a strong bridging mechanism of the
reinforcement lead to this result.
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Figure 1:a) Schematic of the composite cross section; b) bilinear cohesive law;
¢) linear bridging law.
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Figure 2: Dimensionless load-vs.-deflection curves for a three-point bending beam.
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Comparison between the bridged-crack model and the cohesive-cracik
model results. Bilinear cohesive law, a=0.2 and =0.001, ¢,=1.5x107,
[=6h.
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Figure 3: Dimensionless load-vs.-deflection curves for a three-point bending beam.
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