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ESTIMATION OF THE DYNAMIC J-R-CURVE FROM A SINGLE
IMPACT BENDING TEST

H.J. Schindler *

A method is presented that enables a dynamic J-R-curve to be
determined from the load vs. displacement diagram of a single
specimen, e.g. from an instrumented Charpy-type test. The method
is based on a theoretical analysis of the fracture process in bending
by means of a two-parameter (CTOD and CTOA) model of crack
initiation and growth, which results in a simple algebraic
evaluation formula. The only required experimental input data are
the energy consumed up to maximum load and the total fracture
energy, both being well defined and easy to obtain. This makes
the evaluation reproducible and unambiguous. The resulting J-R-
curves are in good agreement with the ones obtained by multi-
specimen techniques. Once knowing the J-R-curve, fracture
toughness parameters can be readily obtained.

INTRODUCTION

Determining fracture toughness or the J-R-curve of elastic-plastic materials like
structural steels under a high loading rate ("dynamic J-R-curve") is a rather difficult
task. The main problem is to measure and record the crack extension during the
rapid fracture process. In general, the only possibility is to use multi-specimen
techniques like low-blow tests (test with limited initial impact energy) or tests
interrupted by means of a stop block. However, for practical puposes, multi-
specimen techniques are often not appropriate, e.g. because of shortage of testing
material, limited time or a too small testing budget. In these cases, an evaluation
method is required which is able to deliver approximate but reproducible toughness
values even from a single test specimen. In the following, a method is presented
that serves for this purpose. Based on a simple analytical model, it enables the crack
extension and, therewith, the dynamic J-R-curve to be calculated from a continuous
load-displacement-diagram, which is obtained from instrumented testing of
precracked Charpy specimens or similar impact bending tests.
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DERIVATION OF THE EVALUATION FORMULA

The J-R-curve of an elastic-plastic three-point bend specimen is given by the
equation (see [1D:

K,Z(F,a0+Aa)

, n-E,(Aa)
J(Aa) =————E/(I—V )+

B-(b,—Aa)

where denotes the eta-factor (n=2 for relatively deeply cracked bend specimens),
E, the dissipated (non-recoverable) part of the absorbed energy (which is a function
of the crack extension Aa), B and by the thickness and width of the ligament,
respectively (Fig 1). For the sake of simplicity, we neglect in the following the first
part of (1), which represents the elastic component of J, because - when dealing
with J-R-curves of elastic plastic material - it is usually small compared to the
plastic component of J. The general form of the J-R-curve is shown in Fig. 2:
Within the so-called J-controlled region (region 1), which is limited by about 0<Aa<
by/10, it is common to approximate it by the potential function

J(Aa)=C-Aa’® for Aa< by/10 2)

1

with C and p introduced as material-dependent constants [2]. Furthermore, in this
region, J is uniquely connected to the crack tip opening displacement d by

J=0, md(Aa) 3)

where Oy is the local dynamic flow stress and m a factor of about 1. The boundary
between region I and II at Aa = Aag is arbitrary, as long as Aag is of the order of
magnitude of by/10. A suitable choice is Aag= Aa,, the latter being the crack
extension at maximum load F, (Fig. 3). As shown below (see eq. (18)), Aa, fulfils
in general the requirement Aan< by/10. Therewith, the J-R-curve in the region II
becomes (see (1)):
mn-E, M E,mp(Aa)
J(Aa)= —’B-ba +/B~(bo " Ad) for Aa>Aan, 4)
where Ep and Eup denote the energy consumed up to the point of maximum force
and in the subsequent tearing phase, respectively. According to basic principles of
mechanics, the latter is determined by
tmp

0(aa) by~ Aa
E (Aa)=_LMam)M(Aa)-d(-)=_|-b07AamM(b)«d9(b) i (®)

b=b,-Aa denoting the actual ligament width. In the tearing phase after maximum
load (range 11 according to Fig. 2), a plastic hinge is formed in the ligament, thus

c
M(b)=-26ﬁ,vB~b2 ’ (©)
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where ¢ represents a non-dimensional factor that takes the value 1 for plane stress
and about 1.45 for plane strain. Stable tearing crack growth is governed by the
crack tip opening angle CTOA, which is defined as

CTO -‘@ 7\
- da ( J

and which is assumed to be approximately constant for tearing crack growth with
Aa>Aay, [3, 4]. For crack extension in bending (Fig. 4) this leads for kinematical
reasons to

CTOA
d9(b)=—7—1;db (8)

where z-b denotes the location of the center of rotation. Inserting (8) and (6) into
(5) gives

B.
E =—8—CCT0A-0'ﬁ,-[2b0~(Aa—Aam)—(Aa—Aam)2] ®
Z

tmp

By inserting (9) in (4), then taking the derivative with respect to Aa and comparing
the resulting expression at Aa=Aa, with the derivative of (3), which is

d dI mn-c dd
T dha Az 0T gy M €10
one obtains, by using (7),
n-c
z=—;n— (11)

The same expression was found in [5] for stationary cracks, which indicates that z
is likely to remain about constant for the subsequent crack growth process.

Inserting (11) and (9) in (5) leads to

b

m
Emp=7CT0A~oﬁ,-[ba~(Aa—Aam)—(Aa—Aa,,,)2] (12)

The unknown CTOA is determined from the total energy Eqy consumed during the
fracture (Fig. 3). The corresponding equation

Ey(Aa=by) = Epp + Emp(Aa=by) = Ey L)

delivers
n-(E,—-E,) a4
B-m-c, (b,—Aa,)

CTOA =
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According to (2), (4), (12) and (14), the J-R-curve can be described by

J(Aa)=C-Aa’ for Aa<Aapy, (15a)
(Aa—Aam)z—]
J(Aa)=]mp+szt(Aa—Aam)——————J for Aa>Aap (15b)
2b,
where
J n'Emp 2Vn.(Elol—Emp)
— S - 5
™ B-b, 27 B-(b,—Aa,)”

The three unknowns in eq. (15), Aap, C and p, are determined by the following
matching conditions of egs. (152) and (1 5b) at Aa=Aap:

J'(Aa,)=J"(Aa,)=1,, (16a)
1 dJ"

E(Aa"‘)z-dA—a(Aa'")zsz (16b)
ZJI dZJII s

7 _ __5

FIvE (Aa,)="r5 (Aa,)=-7 (16¢)

0

Herein, the superscripts I and 11 indicate correspondence to0 range 1 (ie. eq. (152))
and II (15b), respectively (see Fig. 2). One obtains therefrom

2 Y n(ao) B
C=(—) — Y ——E,E,"”" a7
p BN(W-aO)
E _-p-b
_Emp P D0
Aa = 2E. (18)
1 Ew |
=|1+
4 2-E, 19

Eq. (15) with (17 - 19) determine the desired J-R-curve. Note that only Epp and Eqy
are needed as experimental input data, which both can be obtained from the load-
displacement diagram very easily and unambiguously. Concerning the exponent p, it
is recommended to use the semi-empirical modification (20) instead of (19), as

discussed in the next chapter.

DISCUSSION

Modification of the exponent . The above formulas to determine the J-R-curve
contain no free parameter. If adjustments to empirical J-R-curves should be made,
they should be made on p rather than on any other of the calculated parameters,
because the former (eq. (19)) follows just from (16c), which is physically a weaker
condition than (16a) and (16b). Actually, p as given in (19) is usually somewhat too
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large, leading to too low J-R-curves (see examples in Fig. S and 6, dashed lines). In
order to find an improved value for p, it is suggested to perform, as a second test, a
low blow test with an impact energy of E,,, which is known from the first (full
blow) test. From the optically measured crack extension in comparison with the
theoretical value given by (18) the empirical value of p can be determined.
However, in most cases the following semi-empirical modification of (19),

3( E,Y
==. el (20)
p p (1+E j ,

tot

which is based on a number of experiments, is sufficiently accurate and
recommended to be used instead of (19). The effect of this modification in
comparison with experimental multi specimen data is shown by two examples in
Fig. 5 and 6, where the dashed line corresponds to (19) and the full lines to (20).

Determination of fracture toughness. A near-initiation J-Integral, J;, /), can be

determined analogously to the static J; ,/p; as defined in [2] by the intersection of
the J-R-curve as given above with the 0.2 mm offset blunting line. For dynamic
testing, the blunting line can be conservatively approximated by the straight line

F, -S
J=s5,-Aa=30-0, -Aa=3 —5— Aa 21
b, B :

[4]. To account for the elastic component of Jy,,p;, Which is neglected in the
above formulas, either the K; - term as given in (1) and calculated for the maximum
load F=F,, should be added, or, as a simpler and conservative possibility, Ey, can
be replaced by E,, in (17) and (18), the latter denoting the full strain energy of the
specimen at maximum load (plastic plus elastic strain energy).
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0.2mm Aag

Fig. 1: Mechanical system of the impact Fig. 2: Schematic representation of aJ-R-
bending test curve

Fig. 4: Definition of local parameters at the
Fracturing section
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Fig. 5. Calculated J-R-curve of a pressure  Fig. 6: Calculated J-R-curve of a structural
vessel steel, compared with the experimental steel Fe520, compared with low-blow data
cleavage data from [6]. (ag=3.2 mm)
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