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CRACK GROWTH IN PRESSURE SENSITIVE ELASTIC-PLASTIC MATERIALS

K.P. Herrmann* and B. Potthast*

In this paper the dynamic effects are investigated connected with the
steady-state stress and deformation fields in the vicinity of a rapidly
propagating crack in a pressure sensitive elastic-plastic material. From
the standpoint of fracture dynamics the stress and deformation fields
are of particular interest in the vicinity of the crack tip. Pressure sensi-
tive materials exhibit a yielding under hydrostatic stress [1-3]. The
modelling of the pressure sensitive properties of the material was per-
formed by the Drucker-Prager yield function in order to investigate the
crack tip fields. Studies concerning pressure sensitive materials have
been performed by Li [4] and Yuan and Lin [5] using the assumptions
of the HRR-field theory and by Bigoni and Radi [6,7]. The latter in-
vestigated a quasistatic crack growth under mode I-loading conditions.

INTRODUCTION

In the case of a dynamic crack propagation, a large portion of the work of inelastic de-
formation near the crack tip is dissipated as heat. As a result of the rapid propagation the
heat conduction from the crack tip is negligibly small. In this paper, the asymptotic stress,
velocity and temperature crack tip fields for fast running cracks in an elastic-plastic, pres-
sure-sensitive material are determined. The asymptotic stress and velocity fields were
calculated from a corresponding boundary value problem considering the mathematical
consequences of a mode I-loading and associated symmetry effects. Then, the asymptotic
temperature field can be calculated directly from the received results of the stress- and
velocity fields. Further, for the calculation of the asymptotic crack tip fields the incre-
mental theory of plasticity was applied and stationary crack growth under mode I-loading
and plane stress conditions has been adopted.

Figure 1 shows a physical model of a dynamically propagating crack extending with the
constant velocity v in a homogeneous elastic - plastic material under mode I-loading in a
plane stress situation. The coordinate system whose origin is attached to the crack tip is
shown in Fig. 1. The propagation of the crack takes place in x,-direction. The crack tip re-
gion of the materi~l exhibits an active plastic region in front of the crack tip which is sur-
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rounded by an elastic region. A plastic reloading region exists along the crack surfaces.
By considering a mode I-loading situation at the crack tip, then the plastic reloading re-
gion is very small compared to the active plastic region. For a mode II-loading situation
the crack tip can be surrounded by several elastic and plastic regions [8].

verni i
The presented crack problem can be described mathematically by the basic equations of
continuum mechanics which consist of the equations of motion
;=P )

where p is the density of the material, and the incremental constitutive equations read [9]
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formulated in cartesian coordinates. In the egs. (1) and (2) ( ) denotes the material time

derivative
¥ a(.
) =-vU 3)
ox,
for a steady-state crack extension along the x -direction. In eq. (2) Dij“’ describes the elas-
tic portion and D, the associated incremental plastic portion of the deformation. Finally,
Q, denotes the gradient tensor of the Drucker-Prager yield function

\V(Gij) = \[12: + %JI.S » “4)

where J, ; represents the first invariant of the stress tensor and J,, the second invariant of
the deviatoric stress tensor. The yield function (4) reduces to the formulation of von
Mises if |L is set to zero. For the plane stress case, the non-vanishing stress and velocity
components in the egs. (1) and (2) are G,;, G Oy u, and 0,. This leads to a system of
five independent nonlinear differential equations.

nstruction of t i nti 1 tem for

Due to the plane formulation of the crack problem the near tip fields are dependent of the
two coordinates X, and x,. Thus, in general the mathematical description results in a par-
tial differential equation system of the functions cij(r,e) and U, (,6). By introducing char-
acteristic first order asymptotic separable expressions in the coordinates r and 0 for the
stresses and velocities [10,11], the resulting differential equations based on the egs. (1)
and (2) can be formulated in 6 only. The singular behaviour of the fields for r—0 is cov-
ered by the exponent s<0 of r in this expressions, where r is the distance with respect to

the crack tip. By using the relations
d o sin(@) 0 d . o cos(8) 9
9 _cos(@)—-—F— , —=sin(O)—+ -_—
X, ( )ar r 00 0Xx, ( )ar r 96
the eqs. (1) and (2) can be summarized in a first-order system of nonlinear ordinary dif-
ferential equations

&)

A (x(e), s) = B(x(e), s) (©)
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where A(x(0),s) denotes a matrix consisting of nonconstant functions of the solution
) : T
vector  x(6) :=[U,(6) , U, (0) '211(6) . Z,,(8) , Z,5(0)] "

Due to the strong nonlinearity of the governing equations the solution of this differential
equation system is reached by a numerical method only.

The ¢ | | fHioi sal bl

The elastic and plastic regions of the mathematical model of the crack tip surroundings
(Fig. 2) are independent of the variable r. Thus, the transitions between the elastic and
plastic regions can be described by the angles 6, and 6, only. This corresponds with the
ordinary differential equation system (6) which is formulated in the variable 6. The

mathematical transition conditions Qij (Qm (')',d) =0 @
for 0, and o.(r.6.)20,( r,6,) ®)
for 8, are graphically presented in Figs. 3 and 4 and marked with the points P, and P,
respectively. The transition angles are specified by the crack tip velocity and the material
behaviour and are results of the differential equation system (6). The whole crack prob-
lem is enclosed by the positions 6=0° and 6=180°. The boundary values are stated by zero
stresses on the crack surfaces for 8=180° and the symmetry of the crack planes due to a
mode I-loading situation,

‘ . el

In the case of a dynamic crack propagation, a large portion of the work of the inelastic
deformation near the crack tip is dissipated as heat. As a result of the high crack tip speed
the heat conduction at the crack tip is rather small and nearly negligible [12]. This fact
results in a steep increase of the temperature T at the crack tip, which can be calculated
from the equation of adiabatic overheating

. p - “.‘
V0,€f = pcT, )
where ¥ is the constant fraction of plastic work converted into heat, ¢ the specific heat

and p the density of the material. If the asymptotic stress field O, and the plastic work rate
€ are known, the asymptotic crack tip temperature field T(r, 6) can be calculated di-

rectly from (9). Due to the behaviour of the stress and velocity fields in the vicinity of the
crack tip, the characteristic asymptotic first order function

T(r,0)= K*E r** T(6) (10)
is introduced for the temperature field. Then by using eq. (5) the relation (9) leads to the
ordinary differential equation

sin T'(6) =p ¥ g(6) + 2scosd T(6) 11
where p and g(0) are defined as
p:= C_IE . &(0):=£(2,(0), UP(0), s). (12)

Equation (11) is valid for the plastic regions as well as for the elastic region without con-
sideration of any transition conditions.
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Due to the symmetry of the temperature field for 8=0° the initial values can be calculated
from
pdg®=0%
2s
Now the initial boundary value problem (11) is solved numerically using the results for
the stresses Z,(60) and velocities U,(6) from the boundary value problem (6).

T =0°) = CT(0=0°) =0. (13)

Numerical solution and resul

Due to the strong nonlinearity of eq. (6) a solution can be obtained in a numerical manner
only. Here, a solution is attained by using the multiple shooting method [13]. Figures 5
and 6 give the singularity exponent s in dependence on the normalized crack tip velocity
B, and with the pressure sensitivity p and the hardening coefficient o as parameters. Fi-
nally, the Figs. 7 and 8 show the asymptotic temperature function T(8) induced by dy-
namic crack growth for varying pressure-sensitivities |1, hardening coefficients o, and the
normalized crack tip velocity B, =0.7.
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Fig. 1: Crack tip geometry for a rapidly

Fig. 2: Mathematical model of the crack tip
propagating crack

surroundings for a rapidly propagating crack

Qij (le dkl)>0 ij

(Qk16k|)=06A Qj (Qnd'u)>0 P,

Q; (le du)>0

Qi (Qu 6’u)>0

Qj (Qu 6k|)< 0 Qi (le 6kl)< O

€

Fig. 3: Transition condition for Gpl Fig. 4: Transition condition for 6,
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Fig. 5: Singularity exponent s for 0=0.2 Fig. 6: Singularity exponent s for
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Fig. 7: Temperature T(8) for a=0.1, B=0.7 Fig.8: Temperature T(8) for 0=0.2, B=0.7
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