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ANALYSIS OF J-INTEGRAL DEPENDENCE ON STRESS HARDENING
EXPONENT FOR FINITE NON-LINEAR ELASTIC CRACKED BODY

R. Risnytchuk*

The Calladine and Drucker theorem of nesting surfaces is
applied to power-law hardening cracked body. For simple
geometry of a body with a crack the energy of the body and J-
integral are expressed via a parameter of remained load. When
the stress hardening exponent tends to infinity the remained load
tends to the limit load. This determines the character of
dependence of J-integral on the size of the crack and stress
hardening exponent. The expression of J-integral is presented in
the terms of load ratio and the strain energy. A simple
conservative estimation of J-integral via the parameters of
reference stress for any value of hardening exponent is
presented.

INTRODUCTION
The estimation of J-integral for plastic bodies is connected with essential

difficulties, that are common in the theory of plasticity. In reference (1) it was
proposed the approximation for J -integral in the form:

J=J.(ay)+ Iy )

where J,(a,;) is the value of J for linear part stress-strain relation, d.; is the size
of the crack with Irvin type correction to account the size of contained plastic
zone, and J, is the value for identical body from material correspond non-linear
relationship between equivalent stress and strain of the form:

8eq/a() ———(X,(GL,q J/‘FGO)" ¢ (2)
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In the case of general plasticity J-integral and load-point displacement due
to the crack A, may be expressed in terms of dimensionless functions ,, /s as (1):

J = ag,0,bh (a/w,n)(P/B)™", 3)
A, = ag,0,bh,(a/w,n)(P/P)"" . 4)

Where a is the crack length, w is the section thickness, b=w-a, P is applied load
and P, is the normalizing load. The General Electric Fracture Handbook (1)
contains tabulated functions which are normalized finite-element solutions for J
for power-law plastic materials.

Using this numerical data the reference stress approach has been
developed by Ainsworth (2). It is based on empirical approximation:

h(a/b,n)/ B =h(a/b,1)/ P"" . ©)

The comparison of these approaches in Ref. (3) shows good agreement of
estimated load from the viewpoint of practical applications. However, the non-
conservatism of the referens stress approach in compare with the finite-element
results is observed for small cracks.

- DARY DISP EMEN

Calladin and Drucker (3)-(5) showed that in the case of power law material
the complementary energy in finite body may be presented in the form:

n+l
Qp)=28C | P |y
(n+D\ P, : ’

(6)

2,5g,<1, n<m,

where P, is the limit load, V — is the volume of the body. Respectively, the J-
integral can be written as:

d
— 7
J= IQ(P)lP @)

= const

In order to analyse the dependence of J-integral on the stress hardening
exponents it is necessary to have a relation between g, and the size of the crack.
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To obtain a simple expression for g, let us consider the case of finite plate with
central crack (Fig.1). In order to evaluate the energy of the cracked body let us
close the crack by applying the additional stress acting on its surface at fix
boundary displacement (Fig.2). On the base of energy conservation law we
obtain:

W(a,A) = W(0,A) - [——o,n,Au, dl, ®)
Ln+1

J

where o, is the stress component in the body without crack with displacement A
on the bound. Here W(a,A) is elastic (nonlinear) energy in the body. For the
finite plate with crack this equation reduces to the following one:

14
W(a,A) = W(O,A)(l— 4‘; Aj, )

where V, is the volume of the crack. The parameter V/(4wA) depends only on
the form and size of the body and stress hadening exponent. From the equation
(9) one can obtain:

(é'iun—l £ 10
A) T 4wA” (0]

Let P, be a remained load that is the load that remained from

y =4wo,/ J3 after appearance of the crack with the length 2a. Taking into
account the non-compressibility of the body A, can be decomposed by two
components:

v, V,
A =—+—. 1
¢ 4w+4w an

Here V, is the volume caused by additional displacement on edges due to the
crack. Moreover, the second component in equation (11) according to (10) equal
zero at n=1. Using equations (7) and (9) J-integral can be presented in the form:

pP\"'( &~P/P
J=a8060;1%(}:) [-Léé—"—))y, E=alw. (12)

Here P, can be expressed as:
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2/(n-1)
14 v,
P/P=1-—-—=|1-—2— )
/B =1 4wA (1 4WAMJ (13)

According to (6) and (13) P,/P, is monotonously decreasing function of n and
tends to unity if n—co.

The expression (12) one can present in the terms of load ratio P/P, or
strain energy W:

J(P)=asocohl(a/w,n)b(—§J 5 (14)
J(W)=n(a/w,n)W/(2b), (15)
where
Py n+la R/Ph H
e 19

op/R)(A-E) F
o€ 2 P

r

nE.n) =~ a7

SOME APPROXIMATIONS FOR J

When 7 tends to infinity then according to (13) and (17) 27 tends to unity
excepting the cases /=0 and /=w. Additional consideration shows that in the case
]=w 2 tends to unity too. From equation (16) in the case n tends to infinity we
obtain:

_@P./d
(O, u)u=

h(a/w’n) = n—wo > EXP| ’ P
0

For correct estimation of h(a/w,n) according to equation (18) it is
necessary to know the dependence of P, on n. Let us assume that in the case n
tend to infinity A(P,)/A(P,)—> b/H. Tnen

ALS) B

= 1
A(R) b @

If I/w—0 we can use the known expression for J for crack in infinite plate (6):
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n+l

P

J= GEOO'O\/;(?) na (20)
b

On the base of equations (19) and (20) we proposed the following
approximation for J :

n+l
P Jna
J:asoco[;;] h{\/;c”b,l) b 1)

COMPARISONS AND CONCLUSION

The comparison of relation (21) with Ainsworth approach and numerical
calculations ( 1) is shown in Fig. 3 in terms of parameter:

F, = (h(a/w.m)/h(a/w.1)"""" (22)

This ratio in Ainsworth approach is equal to 1. For curves that lie over
F,=1 (Ainsworth approach) the value of J is greater than the value of J proposed
by Ainsworth and vice versa. As it can be seen from Fig.3 for small I/w we
obtains good agreement with numerical calculations (1). For any value of //w the
presented estimation is conservative. The deviations between results obtained
from (21) and numerical finite element calculations for all » and [ is not greater

than 11%. Ainsworth approach yields slightly lower value for J for small cracks.
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Figure 3. Dependence of F, on n calculated by finite elements method (dashed
lines) and by equation (21) (solid ones)



