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PROBABILISTIC APPROACH TO STRUCTURAL INTEGRITY
ASSESSMENT AND LIFE-TIME PREDICTION

V. Bina and O. Bielak *

The probabilistic approaches in assessing structural integrity
reflect the fact that the fracture properties, crack sizes, and
the fracture mechanics parameters K, J are random quantities
or stochastic processes (time dependence). In assessing
structural  integrity, the risk  (probability) of failure is
calculated instead of the safety coefficient. The philosophy
enables the reliability of the entire structure in question to be
evaluated while accounting for the actual number of the
critical locations (the size effect). In addition to the
probabilistic failure risk evaluation models, also the
elementary principles of application of the probabilistic
model for the economic assessment of the system service
life are presented.

INTRODUCTION

The state-of-the-art methodologies of assessment of structural resistance to
fracture have been based in calculating the safety coefficient in dependence on the
crack length. By including also the extreme values or selected probability ranges,
the dispersion of the material fracture properties can be accounted for (Milne et al.
(1), Schwalbe and Cornec (2), Ainsworth et al. (3))- While the capacity of the
methodology to provide for a detailed analysis of the respective effects of the
different quantities is not doubted, it cannot address the problem of structural
reliability assessment in terms of the potential occurrence of cracks of different
lengths etc. Neither allows the use of the safety coefficients philosophy for assessing
the reliability of the structure as a whole (the size factor), especially in cases when
the structure consists of a large number of clements or critical locations (a welded
piping system, gas- Of oil-lines).

By assuming the structural behaviour being governed by concurrent joint
effects of numerous factors which are random in their nature (maternial properties,
occurrence of cracks of different sizes), probabilistic approaches and methods can
be used to address the reliability problems (Provan (4)).
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However, with long-term exposure to the service loads also the fracture
characteristics tend to degrade, especially so if the material is subject to elevated
temperatures (such as temper embrittlement). Therefore, in-service degradation
of the fracture characteristics can cause these parameters to decline even below
the critical level, thus causing the structure to fail even if the initial state had been
fully acceptable. Hence also the issues of assessing the service lives of systems
in view of sudden loss of integrity must be addressed.

FRACTURE PROPERTIES AS STOCHASTIC PROCESS

In modelling the fracture properties the probability distribution
function shall be assumed to be given as a function of time t

P[Kc(t) <K] = FrelK;t] o))

The merits of such a model of fracture properties in terms of practical
applications can be seen for example from Fig.1 in which the experimental results
for the Charpy-V energy tests are plotted in dependence on the Larson-Miller
parameter P. The test specimens were annealed at several different temperature
levels for different exposure times. Following the temperature exposure, the
Charpy-V energy was measured at 20°C and estimated using the relation
proposed in (5)

log(KCV) = A, +A,P+A P’ 2)

where P = T(logt + A,) and t is the exposure time at temperature T.

Since there exists a relation between the Charpy-V energy and fracture
toughness, relation (2) can be expected to hold also for fracture toughness
predictions as demonstrated in paragraph below.

PROBABILISTIC MODEL OF FRACTURE

Considering the monotonous decrease of the fracture properties governed
by equation (2), relation (1) can be interpreted as the conditional

P[Kc(t) <K] = P[tc <tlK] 3)

probability (under given K - Fig.2) of sudden fracture occurring before time t, i.e.
where t. denotes the time of sudden fracture as a random variable.

Since K is a function of the crack size and stress, a more general formula

to calculate the risk of fracture and the time prediction can be derived. The basic
principles of fracture mechanics are used for the probabilistic model, with the
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stress intensity factor or the J-integral used to characterise the stress field in the
crack tip (Milne et all (1)) being considered to be the main variables controlling
the process. If K or J reach their critical values K. or J., sudden fracture of the
material occurs. Using the language of probabilities, the above phenomenon can
be formulated as follows. As the event B we denote the situation in which the

critical value of the fracture characteristics at time t 15 exceeded, i.e. sudden
fracture

B = {Kc() <K} where K is assumed to be random quantity. @

The events A, shall denote the stress intensity factor K at time t falling in the
elementary interval <z, Z), 1.€.

A= {K €<z, 2)} s ZZo < LSS 2, <. L2, Zp )

It follows from the above definition of the events A, that A, NA, =@ for i#j. Event
B can thus be expressed as

n
B=U BNA).
Since (Br\A‘)m(BmAJ)= @ for i#j, the probability of B can be written as
P(B) = }‘il P(BAA,). 6)
1=

From the conditional probability theorem (Gnedenko (6)), the relationship

P(BA,
P(BIAY) = “Fay ™

follows. By substituting relation (7) into relation (6), equation
P(B) :_fz] P(BIA).P(A}) ®)
can be obtained for the probability of the event B.

The risk of occurrence of sudden fracture can be calculated using the
above relation provided the probabilities P(B|A) and P(A) are more closely
specified. The event (B | A) denotes the occurrence of sudden fracture with the
critical values of K(t) or J(t) being less than K;orJ; respectively at the time t, 1.€.

(B|A}={Kc®=sK por (BA}={JcO®O=<L} ®
From the above identity of events (9) also the equality of probabilities (Kampen

(7)) follows
P(B|A)=PK. (<K, P(B|A) =Pl <] (10)
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The probabilities in relation (10) can be calculated from relation (1).

The probabilities P(A,) of events A, in relation (5) are the probabilities with
which the stress intensity factor falls in the interval <z, z). These probabilities
can be calculated using the probability density functions for the crack size a(t) -
g(a;t) and stress o(t) - h(o;t) respectively. For this purpose, both these processes
can be assumed to be stochastically independent. The set Q (j, k) = {a, o, for
which K, €<z, z)} is determined and the formula

P(A)) :g (jzl:o g(aj; )Aaj .h(ok; Aok (11)

can be found to hold for the probability P(A,). After substituting (10) and (11)
into (8), relation

P(B) =3 P[Kc(®) <Ki] = T g(aj; )Aaj.h(ok; YAy
1=1 Qi(.k) )

P(B) =Z§ P[Kc(t) < K(aj, ox)]-g(aj; ). h(ok; DAajAck (12)
]

can be derived which, for n — oo assumes the form

sC

P(B) =[ [ P[Kc() < K(a, 0)].g(a; t) h(o; t)dado. (13)
0o

The crack growth and stress processes can be assumed to be processes
increasing with time (e.g. due to material fatigue  damage and corrosion
respectively) and hence also the stress intensity factor shall be a growing random
function - cf Fig.3. In that case relation (13) can be interpreted as the risk of
failure by sudden fracture before time t, i.e.

Plt,<t]=P(B). (14)

Relation (13) can be further modified to allow the application of the
two criterion.Under the two criterion, fracture occurs whenever any operating point
defined by its co-ordinates (S,K)) falls above the limit curve G. Fracture occurs
whenever the condition (event B)

B = {K:(t) > G(S»)} (1s)

occurs (Provan (4)).In the above relation (15), G stands for the function defining
the limit curve depending on S, K (t) = K(a,0)/ K.(1) ; S, = o /o, where o is the
effective stress and o, is the stress flow.

Relation (15) can be rearranged after substituting K., S, into
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B = {Kc(®) < K(a,0)/G(o/on)} = {Kc®) <K'} (16)
The events A, will be defined analogously using relation (5).
A={K €<2,,2)}, 2" %<2 <, L 5%, 58 Tyn (17)
Conditional event B under given A, can be expressed by relation
(B|A}={K(< K', }, where K’ = K(a,0)/ S(c/cy). (18)

Consequently, the probability of {B|Ai} expresses the risk of sudden fracture
before time t at given K',. The unconditional probability - failure risk - is obtained
analogously as described for relation (12) or (13). In addition, the material variables
such as K. () and o(t) degrade with time monotonously. Stress can be
assumed to grow in time due to effects like element wall thickness decrease due
to corrosion. The crack size is always a quantity growing with time. Using the
above assumptions, the trajectory of the point (S.K) shall be a monotonously
growing curve (see Fig.4). The risk of fracture, or the probability of fracture

occurring before time t, can be calculated by integrating as

Pltc <1 = [ o [o" P[Kc® <K(@.0)/ GO fot)]
g(a; hg(o; 1) f(oy; t)dadodor (19)

where g(a;t), hg(o;t) and fo,;t) are the respective probability density functions
of the crack size a, effective stress and the stress flow at time t.

PROBABILITY DISTRIBUTION FUNCTIONS OF THE CRACK SIZE

A number of different probability distribution or density functions have
been proposed for the quantity such as the exponential or Weibull (8) functions all
of which, however, can model one dimension of the crack only, while for more
realistic modelling at least two dimensions - the length and the depth - are
necessary. In case stochastic independence is assumed, the multi-dimensional
distribution function can be relatively easily obtained as the product of the
respective crack length and depth distribution functions. However, it has been
demonstrated that rather than independent, crack lengths and depths tend to be
statistically ~ correlated quantities. In the paper, the truncated two-dimensional
normal probability distribution with a correlation coefficient (Gnedenko (6)) was
used.
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APPLICATION OF PROBABILISTIC METHODS FOR SYSTEM
INTEGRITY EVALUATION

Using the relations defining the risks of failure of the different elements
of the structure the risk of failure of the whole structure can be calculated as

P(failure) = 1-,?11 [1 - P;(failure)] (20)
i=

where P(failure) is the risk of failure of the whole structure; P (failure) is the risk of
failure of i-th element of the structure and m is the total number of elements.

The above probabilistic methods were used to calculate the risk of failure
of a piping system transporting hydrogen contaminated by H,S. The system
comprised 16 welds between the elbows and the straight pipe sections. The
Weibull distribution function was used for the K., (Mode I threshold stress
intensity factor for Stress Corrosion Cracking). The degradation of the mean
values of K,i.. was modelled using relation (1) obtained from experimental
findings published in (9). The regression curve showing the dependence of K.
on the Larson-Miller parameter is presented in Fig.5. The standard deviation
was calculated to be 0.125 of the mean, i.e. corresponding to the lower
tolerance limit of 0.75 of the mean (9). The minimum values were calculated to
be 0.625 of the mean value which corresponds to the reduction of the mean by
three times the standard deviation.

The truncated two-dimensional normal distribution function was used to
model the crack size distribution. The relative mean crack depth (longitudinal
semi-elliptic cracks growing from the inner surface of the circumferential weld)
was 0.23 times the wall thickness. The relative mean crack length was 0.69 of the
wall thickness. The results obtained from the failure risk calculation performed
for the whole piping system (for the correlation coefficient of 0.7) for different
service times are presented in Fig.6.Inevitably, the issue of the acceptable risk level
has to be dealt with, however. One possible alternative is to define the failure risk in
view of the economic effects. The function

C(ty=Z+1(t)- O(t) - R(t).H 21
can be introduced, where the symbols have the following meanings:
Z - the initial investment for the system erection, I(t) - the earnings from the system
operation over time t, O(t) - operating costs over time t, R(t) - the risk of failure

over time t, H - the costs incurred due to the failure.

The optimation of the function C(t) (its maximum) in time t could also serve
as an indicator for the risk level definition.
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CONCLUSIONS

1. In a system which is safe as-designed, the deterioration of material properties
results in a significant increase of the failure risk with service time.

2. With increasing the crack length/depth correlation coefficient, the
calculated failure risk can grow by a factor of up to five.

SYMBOLS USED

a(t), o(t) = crack size and stress at time t
K1), odt) = fracture toughness and flow stress at time t
K(a,0) = stress intensity factor as a function of the crack length a

and stress ©

Fo(K;t), P[K(t)<K] = probability distribution function of the fracture properties
considered a stochastic process K.(t)

s = wall thickness

G.» Ofin = upper limit of the effective and flow stresess

g(x;t), h(oyt), flot) = probability density function of the stochastic process a(t),
stress o(t) and stress flow G (t) respectively

P(t. <t|K) = risk of failure occurring before time t at a given value K of
the stress intensity factor
P(t.<t) = risk of failure occurring before time t
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Fig.1 The effect of time-temperature exposition on notch toughness of Cr18Nil1Ti
steel
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Fig.2 The shape of the K.(t) process in the time and intersection with K level
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Fig.4 Trajectory of the points (S, K,) due to material damage and crack growth
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Fig.5 The effect of time-temperature exposition on K. of Cr2.25Mol steel
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Fig.6 The failure risk growth with service time
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