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STRESS INTENSITY FACT! ORS IN STATICALLY
INDETERMINATE CRACKED BEAMS

A. Valiente, M. Elices and F. Ustariz*

This paper presents a method for calculating the stress intensity
factors in cracked beams. The cracked cross-sections are treated
as singular sections with finite bending and shear compliances
from which the expressions of the stress intensity factors are de-
rived. The principles of Strength of Materials are used for the
structural analysis of statically determinate and indeterminate
cracked beams by incorporating the effects of the cracks through
such compliances. The method is applied for a particular case and
the results are compared with that obtained with a finite element
modelling.

INTRODUCTION

Cracking phenomena due to fati gue, welding or stress corrosion not only affect com-
ponents used in advanced technologies, such as pipelines, pressure vessels or aircraft

Rolfe and Barsom (1). However, the analysis of frames with cracked beams is an
engineering problem not yet solved.

Fracture mechanics provides useful tools for the mechanical analysis of cracked
bodies, but except for a few simple cases where the stress intensity factors can be
obtained from handbooks, the analysis of a cracked beam must be performed in a
numerical way, involving high costs and providing no general results. For example,
in the method developed by M.H. El-Hadad et al (2) for the analysis of statically in-
determinate plane frames containing cracks, the stiffness decreases of beams due to
cracks are included in the stiffness matrix of the structure, but they have to be ob-
tained from some available expression of the corresponding stress intensity factor.
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This work presents a simplified approach to calculate the stress intensity factor
of statically indeterminate cracked beams in modes I and II. The bases of the method
are the bending and shear compliances of a cracked cross-section. These compliances
are numerically evaluated from the flexural and shear stresses that the theory of
Strength of Materials provides for the section, incorporated into the classical Mohr’s
theorems for determining the unknown forces or moments, and used to derive ex-
pressions for the stress intensity factors.

THEORETICAL FORMULATION

In the analysis of beams based on Strength of Materials, local singularities such as
concentrated forces, supports, hinges, etc., are reflected as local discontinuities in the
shear and moment diagrams or in the deflection curve. This treatment can be extended
to the case of cracked beams if the effect of cracks is assumed to be concentrated in
the cracked sections, causing a discontinuity of slope and deflection in the elastic
curve. The principle of superposition can be applied to isolate the effects of the crack
and to evaluate them in terms of slope and deflection discontinuities. As Figure 1 in-
dicates, the stresses and strains caused by the shear force and the bending moment
near the cracked section result from combining those originated by three loading
states: (0) the same force and moment acting in the absence of crack, (1) and (2)
normal and shear stress distributions applied on the crack surfaces, which cancel out
those along the crack plane in the state (0). Therefore, the applied stresses of the
states (1) and (2) are the opposed to those caused by the bending moment and the
shear force on the uncracked section and their values can be estimated from the theo-
retical solutions of Strength of Materials:

M = QUG

c=TY 1) I B(y) €5

where ¢ and T are the normal and shear stress at a distance y from the neutral axis, M
is the bending moment, Q is the shear force, I is the moment of inertia of the section,
B(y) is the width of the section at the distance y, and M(y) is the first moment about
the neutral axis of the part of the section at a distance from the neutral axis greater
than y.

The principle of superposition, as applied in Figure 1, shows that the effects of
the crack on the beam are those caused by the loads of states (1) and (2). According
to Figure 2, these effects can be evaluated as slope and deflection discontinuities in
the elastic curve of the beam. The deformation of the beam under these loads is con-
centrated near the cracked section, so that beyond the affected region, the two por-
tions of the beam at each side of the crack behave as rigid bodies. Because of symme-
try of loading in state (1) and anti-symmetry in state (2), the motions of the two rigid
parts of the beam in relation to each other are a rotation of angle © in the first case,
and a translation of magnitude V normal to the neutral plane in the second. Neglecting
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the length of the deformed zone, these two motions are the only effects on the beam
due to the crack, and represent discontinuities of slope and deflection at the cracked
section for the elastic curve. On the other hand, according to Equations (1) and (2),
the loads that cause the discontinuities, and as a consequence the discontinuities
themselves are respectively proportional to the bending moment and to the shear force
at the cracked section. Therefore, if 0 is the slope of the elastic curve and v is the de-
flection:

A8=0=CM (3) Av=V=CQ @4

The proportionality factors C. and C, in Equations (3) and (4) are specific
functions of the crack depth for each cross-section and can be considered as the
bending and shear compliances of the cracked section. The dependence between these
compliances and the crack depth a can be expressed in a dimensionless manner as:

w w
Cpn = 5 M@/W) (5) Ci=gx@/W) (6)

where W and A are respectively the width and the area of the entire cross-section, E
is the Young’s modulus, and m(-) and q(-) are dimensionless functions only depen-
dent on the cross-section configuration.

Under the loadings of the states ( 1) and (2), the crack will be deformed in
modes I and II, respectively, because the loads of these states are symmetrically and
anti-symmetrically distributed about the crack plane. Therefore, the stress intensity
factors K; and K, can be calculated from the bending moment M and the shear force
Q at the cracked section, and from the compliances C_, and C,, through the well-
known formulae:

- - /Eﬁz / E _dC, _ /m_'(a/_‘w

K,=+GE =M A M T M T %)
e B o fEqu _ / E dC, _ fQ'(a/W)

Ku=vGiE =Q 2 dA, =Q 2B(a) da =Q 2AB(a) ®

where A, is the cracked area of the cross section, and m’() and q’(.) are the deriva-
tives of the functions m(-) and q(-).

To calculate the stress intensity factors it is necessary to determine the values of
the bending moment M and the shear force Q. If the beam i statically indeterminate
they would have to be found from compatibility of displacements and rotations, in-
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cluding those caused by the crack. These contributions to displacements and rotations
can be added directly in the Mohr’s theorems as local increments of the slope and the
deflection of the elastic curve at the cracked section. Hence, the problem can be
solved within the context of Strength of Materials, with no additions other than the
bending and shear compliances of the cracked cross-section. The difference of de-
flections vy—v, and slopes 65-6, between the ends A and B of a portion of the
cracked beam containing the crack will be given by the expressions:

1 B
0, -0, = MC, + EJMfdx ©)
A

1 (® M; -M,
Vp— Va= 0,(x xB)+QCq+MCm(xC— xB)+ﬁ (x —xB)Mfdx+—C—}A——
A

1

(10)

The rotation between A and B is given by the two terms in Equation (9), which
are the rotation at the cracked section and that due to the bending moments acting on
the uncracked sections, respectively. The second and the fourth terms in Equation
(10) are the analogous contributions for the deflection between A and B, the first and
the third one are the deflections due to the rotations at the end A and the cracked sec-
tion, respectively, and the last one is that produced by the shear force acting on the
uncracked sections; G is the shear modulus, and A, is the shear effective area of the
cross-section. Figure 3 illustrates both Equations.

ANALYSIS OF A STATICALLY INDETERMINATE CRACKED BEAM

The stress intensity factors of a cracked beam with rectangular cross-section such as
the one depicted in Figure 4 were calculated using the formulated approach and
directly, with a commercial finite element program. The span and the crack depth
were respectively 10 and 0.4 times the width. The beam was modelled by means of a
2D mesh. The stress intensity factors were obtained from the displacements of the
crack lips near the tip, but this procedure did not allow a reliable K;-value to be
obtained because the parallel displacements to the crack lips were excessively de-
viated from the theoretical field.

The functions m(-) and q(-) of a rectangular cross-section were numerically
determined by solving the loading cases of the states (1) and (2) in Figure 2 for 9
crack depths ranging from 0.1 t0 0.9 times the width of the section. These calcula-
tions were performed with the same finite element program that for the analysis of the
cracked beam. The resulting values of m(-) were compared with that given by Tada et
al (3), the maximum difference being lower than 8%. The 9 calculated values of the
functions m(-) and q(-) were used to fit analytical expressions for each function.

Equation (10) allows the reaction force at the support to be found, and from
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this force the bending moment and the shear force at the cracked section can be ob-
tained. Finally, the stress intensity factors were calculated by introducing the ana-
lytical expressions of m(-) and q(*) into Equations (7) and (8). Some significant val-
ues obtained by both methods are given in Table 1 for comparison.

TABLE 1- Values obtained in the analysis of the cracked beam of Figure 4.
(B is the beam thickness)
Present Approach | Finite Elements
Bending Moment 0.42pW? 0.43pW?
(at the cracked section)
Shear Force 0.057pW 0.058pW
(at the cracked section)
K, 3.63EW” 3.675W”
Ky 0.073FW'7 =
DI ION AND CONCIUSION

Table 1 confirms the possibilities of the proposed approach. The differences between
the values based on the approach and a refined finite element computation are lower
than 3%, the same magnitude of error that can be expected in analogous analysis of
the uncracked beam. The main advantages of the method are two: 1) the crack
analysis has only to be performed for each cross-section configuration and not for
each beam; 2) once the functions m(-) and q(-) of the given cross-section are known,
the analysis can be applied to statically determinate or indeterminate cases using the
procedures of Strength of Materials.
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Figure 1. Principle of superposition applied to a cracked beam.
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Figure 2. Beam deformations due to a crack.

Figure 3. Structural analysis of cracked beams.
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Figure 4. Statically indeterminate cracked beam used for applying the method.
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