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Abstract

In this paper we studied the crack front fields under small-scale yielding con-
ditions. Effects of the out-of-plane fields in three-dimensional cases were empha-
sised. The stress fields develop towards the plane stress with increasing applied
loads. So the specimen thickness plays a key role in characterisations of the
three-dimensional crack-tip fields. The out-of-plane constraints are a decreasing
function of the applied loads. The second terms in the three-dimensional stress
fields are dependent on distance to the tip and to the free edge-surface of the
specimen. It was shown that the stress triaxiality at the crack front is substanti-
ally a linear function of Q. @ characterises variations of the stress triaxiality at
the three-dimensional crack front fields. Our results confirmed that the normali-
sed hydrostatic stress over Mises stress is not uniquely correlated with the stress
triaxiality at the tip front.

1 Introduction

Three-dimensional crack front fields in elastic-plastic materials have been extensi-
vely studied since several years [1, 2, 3, 4]. Whereas most analyses concentrated on
surface-cracked specimens, e.g. in [2, 3], Nakamura and Parks [1] performed detailed
finite-element calculations in the crack front fields containing substantial plane stress
components. It has been shown that the crack front field is dominated by the plane
strain solution only when the applied loads are vanishingly small. The whole field is
characterised by the plane stress solution if the size of the plastic zone is larger than
1.5 times of the plate thickness. This result implies that in many experiments using
the conventional cracked specimens effects of the plane stress field are not negligi-
ble. Parks [5] reviewed the results of two different cracked geometries, which were
reported in [1, 3], and concluded that the crack front fields deviated from the HRR-
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or SSY-type constraint significantly. It is desirable to extend detailed finite element
analysis, as Hancock and co-workers [7, 8] have demonstrated for the two-parameter
plane strain, to three-dimensional local fields.

Quantification of the local constraint effects at the crack tip have been intensi-
vely studied recently [7, 8, 9, 10, 17]. Most results are restricted to two-dimensional
plane strain cases and partially in surface-cracked panels [18], in which the crack front
fields seem near to plane strain. In these cases variations of the out-of-plane stress, 0.z,
can be represented by the in-plane normal stresses through the material constitutive
equations. So the constraint problem dealt with is practically simplified to investi-
gation of the in-plane fields. Further discussions in more general three-dimensional
crack fields are extended to what and how the second-parameter for crack-tip fields
should be, especially when the out-of-plane stress fields cannot be characterised by the
in-plane stresses. Is it T, [6, 7, 8], Q [9, 10, 17] or even the normalised stress triaxiality
(om/oe) directly (2, 12]? Each parameter has its different physical background and
causes advantages on this side and drawbacks on the other side [14].

In the present paper we have discussed quantification of the constraint effects
in Ramberg-Osgood materials under small-scale yielding conditions. The small-scale
yielding denotes such cases that the size of the plastic zone is much smaller than a
characteristic dimension of the specimen (rr/t << 1). The in-plane boundaries of the
specimens do not affect the crack-tip fields. The efforts were devoted to investigate
effects of the specimen thickness coupled with the biaxial loading. More general
discussions including general yielding in finite cracked geometry will be reported in a
separate paper.

2 Finite Element Model

The geometry considered in this section is analogous to that introduced by Nakamura
and Parks [1]. We image a plate which under arbitrary remote loading contains an
annular region where the local deformation field may be essentially characterised by
a scalable eigensolution (the HRR-solution), which is independent of the aspects of
in-plane geometry and loading. A circular disc containing the crack tip in a large
plate was removed, modelling the near tip region with the modified boundary layer
formulation (Fig. 1). The biaxial loads are applied through the transverse T-stress.
The straight crack front is located at the centre of the disc along the z-axis (z,y = 0).
Only a quarter of the disc (0 <8 < 7,0 < z[t < 1) was modelled. The radial extent
of the disc was Tmqz = 20t, where the in-plane K displacement boundary conditions

K fr T
Ug = Ega(ﬂ, V) —2-; + -Eha(o, l/) (1)
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were applied uniformly across the thickness. In the equation F and v represent
Young’s modulus and Poisson’s ratio, respectively. g, and h, are known dimension-
less angular functions. The out-of-plane displacement in the remote radius (Tmaz)
is distributed linearly along the coordinate 2, which corresponds to the plane stress
solution [13]. Numerical calculations have shown that the further variations of the
remote radius do not change the eigensolution at the three-dimensional crack front.
The load is thus characterised by J = K2/E, where J denotes the Rice’s J-integral
[11]. In the three-dimensional crack analysis the J-integral is generally a function
of the thickness coordinate z, the local J-integral. Without additional explanations,
J denotes the local J-integral throughout this text. The problem discussed in the
present work contains three characteristic dimensions, they are thickness ¢, the app-
lied load J/og€p and the transverse load represented through 7 = T/op. The length
dimensions of a plate can be normalised with these scales [1].

Our numerical calculations have shown furthermore that the stress field charac-
terised by the plane strain or plane stress may be obtained under suitable biaxiality
ratio K//T. In this work we have classified two different stress fields: One with very
small plastic zone size in comparing with the plate thickness (rp/t < 0.1) corresponds
a field dominated by the plane strain solution, and the other has a plastic zone di-
mension corresponding the thickness (rp/t > 0.5) and is increasingly effected by the
plane stress solution from the edge-surface (2/t = 1). The analysis of the boundary
layer formulation with T-stress in the range —1 < 7 < 1 is considered. Note that the
size of the plastic zone is sensitive to the loading path, K/T, in general. Only for
some values of K/T the small-scale yielding solution can be obtained up to |7| = 1.
A solution for |7| > 1 cannot be generated by the boundary layer formulation since
small-scale yielding conditions will be violated.

The ABAQUS general-purpose finite element program [15] has been used for the
computations. In all finite element calculations the J-integral has been calculated by
the virtual crack extension method, which is implemented in ABAQUS. The radial
length of the smallest elements is about 107%a, where a denotes the crack length
which is represented by the remote radius Tmaz in the boundary layer formulation
(Fig. 1). The mesh in the radial direction is generated by exponential scaling. The
finite element model is constructed using 8-nodal isoparametric elements with 2 x 2
Gaussian integration. There are 24 elements within the angular region from 0 to
7 in the crack-tip region. To catch the significant changes of the stress fields near
the free edge-surface, 13 elements are spanned along the crack front and the element
brick thickness in a potential form. The thickness of the elements near the free
edge-surface is about 0.01 of those near the mid-plane. In the present paper, all
computations have been performed under deformation plasticity und inifinitesimale
strain theory. The stress-strain relation is given through the Ramberg-Osgood model
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with a strain-hardening exponent n = 10.

3 Results and Discussions

0O’Dowd and Shih [9, 10] have examined the characteristics of the high and low stress
triaxialities surrounding the finite strain zone and introduced the J — @ annulus in
the framework of the Jo-deformation theory of plasticity. In their studies the plane
strain solution of the modified boundary layer formulation, [a,-j]SSY’T=°, was taken
as the reference solution. The second term quantifying the relevant stress triaxiality
was obtained by subtracting the reference solution scaled by the applied J from the
full-field solution, i.e.

SSY,T=0
oij = [O'ij (ﬁ,@)] + Qoo6ij(r,0), (2)

where oo denotes the yield stress of the material. Under the Jo-deformation theory
of plasticity with Ramberg-Osgood model, O’Dowd and Shih [9, 10] have found the
second terms in (2) may be replaced by the Kronecker-delta, which read

- SSY,T=0
oij = [o‘,']' (7/—;0,9>] +Q0’06,‘J’, (3)

in the forward sector (8 < m/2), where the dimensionless parameter

SSY,T=0
0g6 — Ogg T
gl 100 at .
oo J/UO

defines a measure of the near-tip stress triaxiality, or crack-tip constraint, relative to
a reference high triaxiality stress state.

Under plane strain conditions this point has been confirmed by many further
numerical investigations. As soon as the crack field deviates from the plane strain
solution, the stresses at the crack tip cannot be represented by (3) in general. Plane
stress calculations [16] have shown that the hoop stress ahead of the crack-tip is hardly
affected by the transverse stress under small-scale yielding conditions. Based on this
observation, it is to expect that the crack front fields in three dimensional cracked
geometry will be increasingly dependent on the size of the plastic zone around the
crack-tip.

This point is confirmed in Figs. 2 and 3, in which the second term of the
hoop stress ggg of Equation (3) is plotted as a function of distance to and the polar
angle around the crack tip in the two different load levels classified previously. The
stress values are taken from the Gaussian integration points near to the ligament
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(6 = 1.5°). Note that J/og is the relevant length scale on the order of CTOD. In
two-dimensional cases the curves are independent of the applied K values. The stress
and strain distributions with the same T-stress value collapse onto a single curve,
when the distance from the tip is normalised by J/ao. In the three-dimensional crack
front fields, however, the stress curves depend on development of the plastic zone
and on the applied loads. The plastic zones for Figs. 2a and 2b are restricted in
Tp < 0.1t. The transverse stress is limited to [7| < 0.6. Beyond this value the plastic
zone grows quickly. It is clearly seen that the stress fields at both the mid-plane
(2/t = 0.056) and in the edge-surface (z/t = 0.996) contain substantial plane strain
components. Variations of the stresses with respect to different transverse T-stress
are analogous to the known plane strain solution [9]. Similar features can also be
observed in the corresponding angular variations (Figs. 2c and 2d). As applied load
intensity K increases, the stress field near the tip develops towards plane stress [1].
Fig. 3 plots the finite element results with a plastic zone in dimension of the plate
thickness. It is to see that the crack front fields are dominated by plane stress [16].
Note the characteristics of the crack front fields depends on the relative size of the
plastic zone comparing with the plate thickness.

In the plane strain calculations Betegén and Hancock [8] as well as O’Dowd and
Shih [9] have demonstrated that the stress fields are practically independent of the
positive T-stress. Only the negative T-stress will reduce the hydrostatic stress at the
crack tip. Wang [3] has suggested that the plane strain hoop stress with respect to
the transverse stress can be expressed through

r T 2 3
e = S = 5
ago(J/ao,o,T> o6 (J/ao,ﬂ,r 0)+AT+BT + C7°, (5)
where A, B and C are coefficients depending on the material properties [17]. From
(5) Q can be determined through

Q = At + Br? + C73, (6)

Discussions in an engineering material [20] have shown that (5) can only be valid
if the crack-tip field is vanishingly affected by the plastic zone development. The
coefficients of the equation are not only functions of material properties but also the
applied load. This can be observed further in the present work. Fig 4 shows Q
evaluated according to (4) as a function of the transverse T-stress in different load
levels. In the MBLF, the T-stress is known according to its definition. The plane
strain result of the Ramberg-Osgood material with n = 10 in the figure is extracted
from [17]. Obviously, the curves of the crack front fields increasingly deviate from the
plane strain with applied loads. Even in small-scale yielding with r,/t < 0.1 @ differs
from the known solution significantly, though the curves can be approximated by a
similar polynomial as in (6). This non-unique correlations between 7' and @ imply
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that the J — T description cannot give an accurate estimation of the stress fields in
some three-dimensional cases at least.

It has been shown that the three-dimensional crack-tip fields are generally af-
fected by the plate thickness significantly. Only when r,/t becomes vanishingly small,
the crack front fields can be described by the plane strain fields. Then the out-of-
plane and the in-plane constraint effects can be treated with Q—J or T—J uniformly.
Based on the discussions above, the characterisation of the hydrostatic stress should
be a function of the specimen geometry as well as the material properties, that is

om = 00S2(Q, 7p/t, Material Properties). (7

In this expression the stress triaxiality at r = 2J/00 and = 0 is explicitly inde-
pendent of the applied loads. The Equation (7) is plotted in Fig. 5a for different
applied K and T' as well as at different z/t. It is interesting to observe that the stress
triaxiality at the tip is essentially a linear function of Q. The Equation (7) can be
re-written as

Im — 5,Q + bo, (8)
Jo

where the factors bg and b are functions of the cracked geometry and the material
properties. Recalling the definition of the @ factor, one may see that bg is the triaxia-
lity of the plane strain reference solution. In the present definition (4), it is the plane
strain small-scale yielding results with T = 0. Our numerical calculations have shown
that by depends slightly on the geometry of the specimens. In the present work, by
approximately equals 1. This results have been further confirmed in other conventio-
nal cracked geometries which have been examined in [14, 20]. @ generally represents
the local difference of the stress triaxiality in the three-dimensional crack fields. Re-
calling the definition of Q and the variation of the second term in the crack-tip fields
(Figs. 2 and 3), we see that the Q value only locally represents the stress triaxiality
at r/(J/oo) =2 and 6 =0. Q may not give a general description of the whole stress
field at the crack front.

Fig. 5b displays the correlation between @ and the normalised hydrostatic
stress om/0e [2]. The normalised hydrostatic stress was suggested to characterise
the constraint effects in analogy to the known continuum damage model for ductile
materials. The result in Fig. 5b shows that the parameter om /o, is not equivalent to

Q.

4 Concluding Remarks

With three-dimensional modified boundary layer formulation it has been shown that
the crack front fields are not only affected by the transverse T-stresses but also by the
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applied J-integral. Only when the applied J-integral becomes vanishingly small, the
stress can be described by the plane strain solution. Otherwise, the size of the plastic
zone is a characteristic parameter for the three-dimensional stress fields. For the cases
with 75/t > 0.5, the stress fields contain substantial plane stress components.

In the present three-dimensional analysis, T does not give an accurate descrip-
tion of the stress field. The non-unique correlations between 7' and @ imply that T
cannot provide an accurate estimate of the stress triaxiality at the crack tip. Only
when in the low load case the second term of the hoop stress defined in (3) satisfies
the assumption introduced under the plane strain conditions in [17]). With the applied
loads the second term becomes increasingly dependent on both polar angle and radial
distance to the crack front. Although Q linearly depends on the hydrostatic stress
Om, Q represents variation of the stress triaxiality at r/(J/o0) =2 and 6 = 0 only.

Acknowledgements: The computations reported were performed on an IBM-RISC work-
station at GKSS-Research Center Geesthacht, Germany.
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Fig. 1: Modified three-dimensional boundary layer formulation (MBLF)
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Fig. 2: Variations of the second term of the hoop stress with very small-scale yielding rP/t<0. 1.
(a) Oge-T/(J/o) at z/t=0.056; (b) Ogq - I/(J/0y) at 2/t=0.996; (c) o - 6 at z/t=0.056;

(d) Oy - 6 at /t=0.996.
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Fig. 3: Variations of the hoop stress with plastic zone sizes corresponding the plate
thickness(r,/£>0.5)- (a) Ggq - 1/(3/oy) at z/t=0.056; (b) Ggq - 1/(}fo ) at z=0.996;
(c) ogg-0at 2/t=0.056; Ggg - 0 2L 2/t=0.996.
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Fig. 5: Characterisation of the stress triaxiality at the crack tip (r/(J/o,=2, 6=0).
The symbols denote the FE results under different biaxial loads at z=0.056 and 0.996,
respectively. (a) Q - 6,/% (®) Q-0 /o,
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