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A SYNTHESIS BETWEEN EXPERIMENTAL AND NUMERICAL METHODS
APPLIED TO THE DETERMINATION OF CRACK RESISTANCE CURVES
FOR VARIOUS SPECIMENS

Dietmar Klingbeil', Georgia Kiinecke', Johannes Schicker'

Ductile fracture of ferritic steels is caused by the nucleation, growth
and coalescence of voids. A model commonly used has been
established by Gurson introducing the void volume fraction as a
damage parameter. Several experiments have been carried out for
notched bars, C(T), M(T) and statically loaded Charpy-V-notched
specimens, all made of the same mild steel. Gurson’s model was
implemented into a finite element code and was applied to all those
specimens assuming either axisymmetric or plane strain conditions.
Several calculations were performed to model the behaviour of all
specimens with one material parameter set, which was found to be
independent from loading and geometry.

INTRODUCTION

One of the most important questions in fracture mechanics of ductile materials is,
how results obtained from different fracture mechanics specimens depend on loading
conditions and the geometry of the specimens and how to adopt results obtained
from laboratory experiments on specimens to real structures. Much work has been
done during recent years to explain the dependence of crack resistance curves on the
geometry and loading conditions of specimens using global concepts but a general
concept, which material parameters are loading and geometry independent and
should be used, is still missing.

One method to obtain loading and geometry independent material parameters
is to model the microscopic process of ductile crack growth, which consists of the
nucleation, growth and coalescence of voids. This process is described by
constitutive equations, which are implemented into finite element codes allowing the
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simulation of ductile tearing even without the presence of an initial crack. The
application of such models usually requires a hybrid methodology where the
material parameters of the model are determined by the numerical simulation of the
experiments. A model commonly used was introduced by Gurson (1) and modified
by Needleman and Tvergaard (2). In the present investigation, this model is taken
for the simulation of experiments on notched tensile bars from which the material
parameters are determined. In a subsequent step, the stable crack growth in C(T),
M(T) and statically loaded Charpy-V-notched specimens is simulated taking the
identical material parameters, where all specimens are made of a mild steel with the
German designation StE 460.

CONSTITUTIVE EQUATIONS

Most engineering metals are ductile and contain rigid inclusions or second-phase
particles. Under an increasing load, a debonding process occurs at the interfaces
between the inclusions and the ductile matrix which causes damage represented by
voids or microcracks. A further loading in the plastic regime results in growth and
coalescence of voids. Constitutive equations taking the micromechanical process of
ductile void growth into account base on considerations of simple unit cell models
with a mostly spherical cavity in a surrounding ductile matrix. Such investigations
were performed by McClintock (3) and Rice and Tracey (4), who all found an
exponential dependence of the void growth rate from the stress triaxiality 6,/0,. Rice
and Tracey (4) found the evolution equation for a cavity with radius R in a perfectly
plastic matrix as

30y,
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with ¢ being the rate of the plastic accumulated strain, G, is the hydrostatic part of
the stress tensor, and ©, is the effective stress, respectively. Eqn. (1) was adopted by
Gurson (1), who developed a yield condition for a spherical cavity in a perfectly
plastic matrix, where yielding even occurs, if only the hydrostatic part & T of the
stress tensor T is active, which is in contrast to the conventional v. Mises plasticity:
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The deviatoric part of the stress tensor is denoted T, and the void volume
fraction f is defined as the ratio of the void volume to the whole volume of a unit
cell. Gurson’s yield condition was modified by Tvergaard and Needleman (2), who
introduced an empirical parameter g, which takes account to the fact, that failure of
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a unit cell does not occur, if the void volume fraction f takes its ultimate value 1,
but much earlier:
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A typical value for ductile steels is q=1.5 (2). Additionally, Tvergaard and
Needleman (2) introduced the modified void volume fraction f* as

f for f<f,
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considering the coalescence of adjacent voids due to slip planes which occur during
the failure process after a critical void volume fraction f, has been achieved. The
crack appears if the final void volume fraction f; is reached, where the material
looses its stress carrying capacity and where the modified void volume fraction f°
achieves its ultimate value f,. The application of these simple micro-mechanical
models is justified by a statistical averaging effect over a large number of unit cells
on the macroscopic scale. The void evolution consists of two terms, namely the
nucleation and growth

f = fgrawth + fml with fgrawxh = (1 _-f)trgp

and f(z) = f, as initial condition

&)

with D being the plastic part of the strain rate tensor, and fj is introduced to be the
initial void volume fraction. The evolution equation (5), holding for void growth,
is derived by assuming incompressible behaviour of the matrix material (1), while
the most difficult modelling problems in the theory of ductile fracture are concerned
with the nucleation of micro-voids at the sites of inclusions and second-phase
particles in a plastically deforming matrix. An empirical approach for the nucleating
part of void evolution written as

€,~¢, (6)
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was suggested in (5, 6) for strain controlled void nucleation and follows a normal
distribution. This strain controlled void nucleation bases on the accumulated plastic
strain of the matrix material, €2. The void volume fraction of void nucleating
particles is denoted as f,, the respective mean critical value is the maximum plastic
strain of the void nucleation, €,, and s, is the appropriate standard deviation. The
evolution of the yield stress in the matrix material follows the incremental equation

6 =HE, o)
where H is the tangent modulus.
DETERMINATION OF MATERIAL PARAMETERS

The material parameters to be determined consist of two classes which characterize
the hardening of the matrix material in classical rate independent plasticity and
which characterize the evolution of damage in the modified Gurson model. Material
hardening for the matrix material in rate independent plasticity is simply
characterized by the true stress vs. logarithmic strain curves, G,,(€), obtained from
uniaxial static tensile and/or compression tests. The damage model described in the
previous section includes 7 parameters in total. Three of them (g,, s, f,) are used
in modelling void nucleation, eqn. (6), and four (g, f,, f., f) describe the evolution
of void growth up to coalescence and final failure, eqn. (4,5).

The material investigated in the present study is a mild ferritic steel with the
German designation StE 460, which contains a lot of perlite islands from which only
a part contributes to the nucleation of voids. The determination of that part and of
the initial void volume fraction are difficult to perform only by microscopic
investigations. In addition to the critical void volume fraction, £, and the final void
volume fraction, f, the initial void volume fraction f, was determined numerically,
too. The notch radii of the tensile specimens investigated are 4mm and 10mm,
respectively. As shown by Tvergaard and Needleman (7), the sudden drop in the
load vs. reduction of the diameter curves of the tensile tests, Figs. 1 and 2, is
associated with the occurrence of f, in the centre elements of the bars. Therefore, the
load vs. reduction of the diameter curves are used to determine f,, f, and f; by
fitting the numerical results into the experimental observations. The stress triaxiality
has only a small influence on the critical void volume fraction f,, as shown by
Koplic and Needleman (8) who regarded unit cell models so that the transferability
of material parameters obtained from tensile tests to fracture mechanics specimens
is ensured.

The parameters were calibrated using the load vs. reduction of diameter data
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from the notched tensile bars and determined as: f,=0.0025, f,=0.021 and f=0.19,
Figs. 1 and 2. The results depend not only on the material parameters, but also on
the element type and the element sizes in the centre of the bars. In the present
investigation, a 4-node linear displacement element with full integration was chosen
and the edge length of the centre elements is 0.5mm for the coarse and 0.25mm for
the fine mesh, Figs. 1 and 2. Obviously, the smaller elements lead to an earlier
failure of the bars caused by an earlier damage of the centre elements. Some further
investigations concerning the mesh dependence of results are performed in (9). The
simulated load vs. reduction of the diameter curves fit very well in the experimental
observations. The material parameters determined and the selected element type are
used for all further calculations concerning the steel StE 460. A more detailed
description of the method used is given in (10).

SIMULATION OF FRACTURE TESTS

The material parameters obtained from tensile tests of notched bars with different
notch radii are used now to predict the ductile crack growth of C(T), M(T) and
statically loaded Charpy-V-notched specimens. The C(T) specimens were 25% side
grooved and had an initial relative crack length of a/W=0.59. The M(T) specimens
were 20% side grooved and their relative initial crack length was a/W=0.49,
respectively. The Charpy-V-notched specimens were neither side-grooved nor pre-
cracked. The experimental results for the C(T) and M(T) specimens were obtained
by the single specimen method with different experiments, Figs. 3, 4 and 5, whereas
all experiments for the Charpy-V-notched specimens resulted from the multi
specimen method, Figs. 8, 9 and 10.

As a result from the simulation of the experiments using Gurson’s model with
the material parameters given above, the load vs. displacement curves are shown in
Figs. 3 and 4 for the C(T) and for the M(T) specimens. The reference displacements
used are the load line displacement, V,;, for the C(T) specimen, and the
displacement, V,, of the point at the specimen’s surface about SSmm away from the
ligament for the M(T) specimen, respectively. Because plane strain conditions are
assumed, the effective thickness of the specimens

. 8
B, =B, B ®)

is taken for the calculation of the resulting forces, which leads to the well known
fact that the load is overestimated because any 3D effect is neglected. Obviously,
the principal behaviour of the load vs. displacement curves is predicted in the right
way by a 2D plane strain calculation.

The numerically predicted and the experimentally observed J-resistance curves
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are compared in Fig. 5 for the C(T) and M(T) specimens. The steps in the simulated
curves are due to the failure of elements in the ligament, i.e., if all integration points
in an element reach the final void volume fraction f=0.19, the element fails, and
crack propagation occurs. The calculations using the Gurson model with one
material predict the different behaviour of both specimen geometries within the
scattering of the experimental data for the crack initiation as well as for the different
slopes during crack propagation parameter set.

A commonly used crack resistance parameter is the crack opening
displacement Js, first introduced by Schwalbe and Hellmann (11). The appropriate
displacements are taken from the FE results and plotted in Fig. 6, where again the
steps refer to the failure of elements in the ligament. Obviously, the initiation values
depend on the geometry of the specimen as well as the slope of the crack resistance
curves. Unfortunately, no experimental data are available for ds.

A typical local result is given in Fig. 7 for the C(T) specimen, where the ratio
of the crack opening stress to the initial yield stress of the matrix material, 6,/R,,,
from a J-controlled crack propagation analysis using a "sharp" crack is compared to
the results from the Gurson calculation. In addition to that, the void volume fraction
f ahead of the crack tip is given. The main difference between the crack opening
stresses is, that the stresses resulting from the Gurson model decrease to zero ahead
of the crack tip indicating that material degradation takes place and the material
looses its stress carrying capability. The crack opening stresses are almost identical
in the ligament as long as the critical void volume fraction £,=0.021 is not achieved,
Fig. 7. The same material data set is applied to statically loaded Charpy-V-notched
specimens. The load vs. displacement of the tup is basically predicted in the right
way, Fig: 8, while the overestimation of the force has the same reason as mentioned
earlier. The steps in the load vs. displacement curve, Fig. 8, is due to the contact
algorithm used at the bearing. The underestimation of the load for larger
displacements results from the plane strain model where the constraint in the
ligament is overestimated leading to an increasing void growth and crack
propagation. The load line displacement vs. crack propagation, Fig. 9, exhibits a
large scattering of the experimental data but the prediction with the Gurson model
meets the experimental data at an average. The experimental results for the J-
integral are obtained according to (12). The numerically predicted results are again
within the scattering of the experiments, Fig. 10. The initiation value J; and the
varying slope of the Jg-curve are correctly predicted.

CONCLUSIONS

The modelling of ductile crack growth in ferritic steels using micromechanical
models simulates the nucleation, growth and coalescence of voids introducing the
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void volume fraction as a damage parameter. Because the micromechanical process
is simulated, the material parameters of damage models are independent of the
geometry and loading type of the specimens. In the present investigation, Gurson’s
model is applied, whose material parameters are determined by fitting the numerical
results into the experimental observations obtained from tests on notched tensile
bars. In a subsequent step, the material parameters obtained are applied to the
simulation of C(T), M(T) and statically loaded Charpy-V-notched specimens. It
turned out that the usage of one set of material parameters for all types of
specimens results in crack resistance curves which are within the scattering of
experimental data.

This fact leads to the conclusion, that one set of material parameters has been
obtained which really is geometry and loading independent and that Gurson’s model
is suited to simulate ductile tearing over a wide range of fracture mechanics
specimens.
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