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THE FRACTAL GROWTH OF PORES IN SINTERED STEELS
UNDER FATIGUE LOADING

M. Rybaczuk”

The growth of fatigue defects in sintered steels is described with
the help of fractals. The idea of fractal evolution and fractal
sieve space localization are presented. Theoretical models are
compared with experimental observations for sintered steels.
Results confirm fractal growth of defects.

INTRODUCTION

Generally any physical process in materials can be observed at all of three
distinct length scales. Moreover each level relates to its own specific degrees
of freedom. The whole samples, their deformations and hysteresis loops are
observed at macroscopic scale. At the opposite limit we view the single atoms,
particles and their motion. However there is also an intermediate range of
magnitude related to defect structures in materials. Thus grain boundaries,
dislocations, small cracks correspond to mesoscopic scale.

Under external loading, the input energy (measured in terms of hysteresis
loop) flows down into deeper levels. Finally at microscale we obtain a heat
outflow. However some part of incoming energy (cold work) becomes stored
at mesoscopic level entailing the defects growth. The final fatigue damage of
sample occurs when defect approaches macroscopic scale. The dynamic of the
whole fatigue process comes from the specific mesoscopic degrees of freedom.

In real materials the growing defects structures are extremely complicated
and we apply fractals to model them. Then fractal measures and dimensions
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play the role of mesoscopic degrees of freedom. The two different ways of
evolution are generally possible:

— the process with fixed fractal dimension (we called it the nonfractal evolution),
— the process in which both fractal characteristics, measure and dimension,
change (we will refer to it as fractal growth).

Defects maintain their initial structure growing under constant dimension
condition. In contrast the fractal deformations of defects effects an initial struc-
ture. Even if the initial and final states coincide we pass through different states
moving along the above two paths. Therefore the dynamics of growth can be
completely different for fractal and nonfractal deformations of defects.

The microscopic observations of growing defects structures suggest fractal
deformations. The computer simulations of simplified stochastic models of com-
posites also confirm fractal behavior (Kozaczewski and Rybaczuk (1)). The
fractal model of evolution gives reasonable results in LCF regime in metals
(Rybaczuk (3)).

It is well-known and confirmed by enormous number of observations that
the growing defects (mainly cracks) become well-localized in some area. On the
other hand fractals don’t distinguish any length scale. Therefore localization
cannot be understood in terms of single fractal with given, constant dimension.
In contrast fractal deformations in above sense correspond to some characteristic
fractal measure. Then the space localization runs according to a very general
mechanism of fractal sieve. The verification of this mechanism in sintered steels
is the main purpose of this paper.

Ordinary physical quantities have fixed physical dimension. Consequently
fractal measures aren’t physical quantities since they change their physical di-
mensions for labile fractal dimension. Such new case requires some new math-
ematical technique not presented here. The multiplicative derivative 7 f(z)/7z
is the one (among others) print of involved methods:

m il li33{f((lf;;)e)ac)}*’

where R, R, denote the set of real, and real positive numbers suitably.

f:R'—_’R+7

(1)

FRACTAL DEFECTS ENERGY AND SPATIAL LOCALIZATION

Let’s denote by &, vp the defect’s energy and measure (D is the fractal dimen-
sion of the defect) suitably. Assuming linear dependence we write:

& = a(D)vp + {other, neglected terms}, (2)
where a(D) denotes some factor with physical dimension (energy) x (length)~P.

In such way we generalize the usual expressions for dislocation’s core energy
or surface energy. The both quantities, energy £ and fractal measure vp are
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extensive physical quantities. The only one intrinsic quantity a(D) describes
all properties specific for given material. Moreover it is widely known that
any smooth deformation of defect may change its energy maintaining fractal
dimension. All such effects as well as interactions between defects are included
into other terms in simplified expression (2) and neglected here.

Inserting the relative shifts of {ractal variables we obtain from (2)

& =(1+e)é, v = (14 De,)vp, D' =(1+ep)D,

¢c = De, +epln (TZPD—)) . AD) = (”—:(—;l))q . 3)

The characteristic measures A(D) define the position of mesoscopic level in
any material. The increase of fractal dimension becomes analogical to the irre-
versible, Joule-Thomson process in gases (Rybaczuk (2)). The inversion curve
is replaced by system of characteristic fractal measures. Moreover there is also
some very general localization mechanism of defects related to A(D).

Mathematics says that any ball with finite, nonzero radius may include even
infinite fractal with lower fractal dimension. However that is not possible in
real physical systems because of discrete structure at microscopic, atomic scale.
The fractal measure of maximal defect (with fractal dimension Dg) included
into ball with radius po is proportional to suitable power pP°. Let’s write the
characteristic measure A(Dg) in the same way, i.e., A(Do) = Do, We consider
the evolution of an isolated defect (i.e., e = 0) growing with respect to measure
and dimension solely. The evolution equation (3) gives

, AD . 1
p =p0(1+ D 111—0> (4)

0 Po

where p' and D' (AD = D' — Dy) denote the suitable ball radius and fractal
dimension after small transformation of defect. Assuming AD > 0 (an increase
of fractal dimension) and po > lo (large defect) we obtain p’ < po. That means
that defect becomes localized in smaller ball. The infinite shift of dimension
(AD = o0) gives p' = lo (i.e., full possible localization). In some way the
characteristic curve A(D) "attracts” defects.

In general the characteristic length [y can be different for labile dimension D.
The effect described by the equation (4) resembles the fractal sieve. Only close
packed defects with fractal measures equal A(D) pass through sieve without
any changes in spatial localization (p’ = po). Note however that the new defect
with higher dimension D" arises from the whole preceding structure.

THE FRACTAL GROWTH OF DEFECTS IN SINTERED STEELS

The defects structure in such materials consists of pores involved by powder
metallurgy technology. The direct fatigue experiments are difficult because
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of brittlness of these materials. Under external loading the existing pores link
themselves with small, thin bridges, but the input energy (measured in terms of
hysteresis loop) is zero up to the accuracy of conventional methods. In turn the
pores do not change during fatigue process. The only effect consists of growing
bridges. The total fractal measure of pore surface and their volume depends on
the magnitude of given sample. Therefore it becomes essential in what way the
defects fractal dimension changes under external loading. According to (4), the
fractal sieve mechanism can follow only from increasing dimension.

Figure 2 presents an observed structure of defects in the cross—section of
a sample. All microscopic observations are done for the same sintered alloyed
KA steel but the samples were prepared at different stages of fatigue process.
The fatigue rupture results from the aggregation of small voids and microcracks
(Dudziniski et all (4)).

At first we seek for the growing structure of pores neglecting other defects
not related to fatigue process. The linear size of observed pores varies from
5um up to 25um. Moreover the distance between pores is of the same order as
pores linear size. The volume of pores constitutes few percent but their surface
can be enormous. The specific chemical and mechanical methods were applied
to samples in course of preparation for direct microscopic observations.

The computer picture analysis system determines the contour of any ob-
served pore as the one shown in the Figure 3. We divide the contour into small
pieces. Next the suitable program estimates the box-counting dimension for
the whole contour and independently for each fragment to verify how stable are
numerical calculations. (Estimation of fractal dimensions are based on extrap-
olations of some functions.) Such procedure is repeated for many pores and
bridges in samples at different stages of fatigue process. Finally we determine
the mean fractal dimension for both structures.

The above research program has been presented in Figure 1. The box 8
and partially 9 contains the already formed bridge. For comparison we have
also evaluated fractal dimension of other structural defects (the box 22) not
related to pores and fatigue process. The last black box depicts the mean
fractal dimension for the whole cross—section of the sample.

The pore surfaces have dimensions ~2.2 whereas for growing bridges we
obtain higher values 2.3+2.35 (=1+(1.3+1.35)). Moreover the growth process
has fractal character. The small unconnected defects appear close to bridges
(see the boxes 1, 3, 4 and 8). At next stages, when bridges link together the
fractal dimension remains approximately constant.

The just borne bridges have magnitude of the same order as distances be-
tween pores. Therefore the mean distance between pores defines the mesoscopic
level in sintered steel. According to observation the linear size related to meso-
scopic scale lies between Spurmn and 25um.
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Figure 1 The local estimation of fractal dimension along pore contour
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Flgure' The abmerved strustuze:of Figure 3 The extracted single pore
pores in sintered steel KA
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