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CHARACTERIZATION OF DUCTILE TEARING RESISTANCE BY ENERGY
DISSIPATION RATE

D. Memhard', W. Brocks', S. Fricke®

The concept of energy dissipation rate as proposed by Turner is
discussed to provide a better understanding of ductile tearing. It
is shown how this quantity can be calculated in a finite element
analysis, or re-evaluated from J-R test records of bend and
tensile specimens. The energy dissipation rate is decreasing with
crack extension in gross plasticity and approaches a stationary
value. It depends on specimen size and loading type, too, but the
different curves can be scaled by a simple normalization based
on limit analysis.

The shapes of the cumulative J-R curves can be derived for
different specimen geometries. Thus, a quantitative explanation
of geometry dependence of R-curves is given.

INTRODUCTION

Ductile tearing resistance of a material is conventionally characterized by a J-
resistance curve which is obtained from bend-type specimens, i.e. C(T) or SE(B),
by standard procedures [1]. It characterizes, within certain limits set forth in the
standards, the resistance against slow stable crack growth. These limits are severe.
First of all, J-R curves refer to bending configurations only, and it is well known
[2,3] that they will be different, e.g., for tensile loading and generally depend on
the specimen geometry and loading configuration. Second, the standards require
that the permitted crack extension does not exceed one tenth of the remaining
ligament. These requirements may inhibit the application to structural components
in many cases when large crack extension and fast ductile fracture have to be
considered or when the loading configuration is closer to tension.

Klemm [4] introduced a parameter called crack propagation energy, which is the
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dissipated energy, dU,, per increment of crack area, dA,

au,
R = 1/;‘” M
a

to characterize the material resistance against fast ductile fracture in pipeline
steels. This definition is a straight transfer of Griffith’s elastic energy release rate
to plastic processes which is consistent with the incremental theory of plasticity.
In fact, the cumulative quantity J, which rises with increasing crack length, is not
the true driving force for ductile tearing as Turner [5] has pointed out in a basic
discussion on the necessity of defining an alternative measure of tearing toughness.
He proposed to define tearing resistance in terms of energy dissipation rate.
Although both approaches have been proposed independently for different cases
of applications they both come to the same definition, eqn. (1).

The present contribution intends to give further evidence to this concept.
Procedures to measure or calculate R are described and discussed and it will be
shown that R approaches a stationary value after a transition phase. This stationary
value, R, depends on the hardening properties of the material but also on the
loading configuration, tension or bending, and the size of the plastic zone. An
example is given how specimen dependent R(Aa) curves can be scaled by a
normalizing factor obtained from a plastic limit analysis. The J-R curves for bend-
and tensile-type specimens and for large stationary crack extension beyond the
limitations of current test standards and available test data can be obtained
analytically by integrating the respective differential equations and introducing an
exponential regression function for R(Aa).

DEFINITION AND EVALUATION OF R

Since Griffith’s considerations on rupture in solids the "energy approach" to
fracture phenomena has become one of two supporting legs of fracture mechanics.
It is based on the material independent law of conservation of energy which is
written down for an incremental process between times ¢ and t+At involving a
crack extension of area AA = A At. The main difficulty in elastic-plastic fracture
mechanics consists in separation of the two dissipative terms in the balance of
power, i.e. the rates of plastic work, [/,,, , and "fracture energy", D; A. Such
seperation would be necessary in order to formulate a relevant fracture criterion,
since Up, is not a material constant but depends on geometry and loading
conditions. In the R-curve method, the difference between the two terms is not
recognized leading to a number of inconsistencies well known as "constraint
effects”. Kolednik [6] gave obvious examples what J-Aa curves really mean in
gross plasticity. Many attempts have been made to split the dissipated energy into
(local) fracture energy and (global) plastic energy, but did not yet yield
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satisfactory results. Turner [5] doubts that splitting dissipation into fracture and
plasticity is possible at all. He suggests the combined plastic plus fracture
dissipation rate to be more relevant and fundamental to plastic tearing than any
quantity derived from total work. At least, a rate quantity is consistent with the
basic idea of incremental theory that plastic processes can only be described by
rate equations, whereas "total" quantities follow by integration and depend on the
integration path.

For quasi-static processes, R can be simply evaluated from the area under the load
vs. displacement curve by

du, dw_ -dU,,
2o Wy 5 o W —dl,

2)
da 7 dA

where W,, is the work done by external forces and U,, is the elastic energy of the
body. In this definition R includes the whole irreversible part of the work done
and, hence may also include plastic work in zones far remote from the crack tip,
e.g. around load points or supports. If an elastic-plastic finite element (FE)
analysis of crack growth [7] is performed, the rate of plastic work can be
calculated directly from stresses and strains

. pl _ pl
U, = [o,e]av = fo,el'av 3)
Y Vv
o, and &/ being von Mises effective stress and effective plastic strain,
respectively. Since the FE model basing on the Mises-Prandtl-Reuss constitutive

equations reflects plastic processes, only, we have R = au, [ dA .

DISSIPATION RATE R AND CUMULATIVE QUANTITY J

The standard procedures of evaluating J from single specimen test data use
recurrence formula to account for the change in crack length. These formula split
the total J into an elastic and a plastic component and sum up the increments of
area under the non-linear load vs. displacement curve for the second component
[1]. In fact, these increments represent dissipated work per crack length increment,
though they are characterized as "plastic”. The recurrence formula can easily be
used to re-evaluate the dissipation rate of eqn. (2) from J-R test data. Memhard
and Klemm [8] have derived the relation for C(T) and SE(B) specimens

R=W-a ¥y ¥ )
n da "

from the J-formula used in ASTM E 1152 [1] with 1(@/W) and y(a/W) being
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geometry functions. Similarly, the relation

dJ

pl
da

R =(W-a) (5)

is obtained for M(T) specimens using the J-formula of Schwalbe and Hellmann [9]
which was derived from considerations by Garwood, Robinson and Turner [10].
These equations allow one to re-evaluate the energy dissipation rate from J-R test
data. They show that the dissipation rate, R, is converted into J differently for
bend-type and tensile type specimens. This means that resulting J-R curves must
necessarily be different for a C(T) and a M(T) specimen. Generally, if the function
R(Aaj is known, the differential eqns. (4) and (5) for J, can be solved and the

P
shape of the corresponding J-R curve will be obtained.

Generally, the decaying shapes of the R(Aa) curves can be fitted by three
parameters with an exponential curve [11]

R =R_[1 + e ©)

Here A governs the intensity of decay from the initial value, R, = R(a, ), to the
steady-state value, R, , and o defines the initial value, R,. The term R_ is the
"crack propagation energy" for steady state growth. The differential equations for
J,1 5 €gs. (4) and (5), can then be solved analytically and closed form expressions
for J-R curves of tensile and bend specimens are obtained [11].

CRACK GROWTH IN C(T) AND M(T) SPECIMENS

R-curve test data from compact specimens, C(T), and centre cracked tensile
panels, M(T), made of the German standard steel StE 460 were used for numerical
crack growth simulations which followed the respective experimental J(Aa) curves,
Fig. 1. All specimens were side grooved, had a width of W = 50 mm, a net
thickness of B, = 20 mm and 16 mm, and a crack length ratio of a,/W = 0.5 and
0.6 for C(T) and M(T), respectively. The specimens have been tested up to 6 to
8 mm crack growth beyond the accepted limits of "J-control" [1] in order to
investigate "geometry effects” for large ductile crack growth [12]. All specimens
were fully yielded at initiation of crack growth. The FE models were two-
dimensional, assuming plane strain conditions, and subject to prescribed
displacements. The global displacements in load direction, V, , plotted vs. crack
extension, Aa, show a qualitatively similar behaviour for both specimen
geometries, Fig. 2, whereas the load vs. displacement curves in Figs. 3 and 4 look
quite different. The net thickness B, was used for calculating the total force for the
FE model in order to compare with the test data.
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Fig. 5 shows the growth of the plastic zone size, A, , with crack growth, Aa , for
both specimen geometries. Only the plastic zone around one crack tip is plotted
which means one half of the total value for the M(T) specimen. Whereas the
plastically deformed area in the C(T) specimen does not change remarkably, it
increases after initiation in the M(T) specimen up to almost double size and
remains approximately constant after 2 mm crack growth, For both specimens, the
steady state value of A, is reached at load maximum, but it is about four times
larger for the tensile-type compared with the bend-type specimen. Though the
plastic zone size remains constant the dissipated plastic work keeps increasing, see
Fig. 6. It can either be calculated from global quantities, i.e. the area under the
load vs. displacement curves, Figs. 3 and 4, or from local quantities, eqn. (3).
Again, only the deformation energy dissipated in one plastic zone was evaluated
for the M(T) specimen. Yet, U, is up to eight times greater in the M(T) than in
the C(T) which is due, first, to the larger plastic zone and, second, to higher
plastic strains.

Whereas the total plastic work is continuously increasing, the dissipation rate, R,
calculated from either eqns. (2), (3), or (4) and (5), respectively, is decreasing and
approaching a stationary value for large crack growth as is shown in Figs. 7 and
8. It is about ten times greater for the centre cracked specimen. In other words, as
ductile crack propagation consumes ten times as much work, the centre cracked
specimen has the higher "tearing resistance”. The latter also behaves more stably
than the compact specimen, which can be noticed in the load vs. displacement
curves of the two structures, Figs. 3 and 4. If the regression curves, eqn. (6), of
dU,, / Bda, obtained from the evalution of eqn. (3), are integrated according to the
solutions of the differential equations (4) and (5), respectively, which are given in
[11], a good agreement is obtained with the experimental J-R curves, see Fig. 9.
Of course, this is not a surprising result but just a verification of the derived
formulas. However, it may elucidate the true nature of J-R curves once more, and
the fact that they can never be expected to be geometry independent.

NORMALIZED CRACK PROPAGATION ENERGY

The quantity R is dependent on the plastic zone size and the kind of loading too,
see Figs. 7 and 8, and thus it does not help directly in solving the problem how
to transfer test results from specimens to large scale components. But one can try
to normalize it appropriately. The obvious idea to convert the dissipation rates of
two structures by the ratio of their respective plastic zone sizes does not work, as
Fig. 10 shows. As crack initiation and growth occurs under fully plastic
conditions, the plastic limit load of the specimens might be an appropriate scaling
factor.

A lower bound analysis yields
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- 2W2+al) - (W +a
F, ( o) ~( ) for C(T) )

SR S =
BW-a,)0, %
2 for M(T)

For hardening materials the "flow" stress is commonly assumed as o, = /4(0,+0,,).
The real limit load is greater or equal the lower bound
F,=x,F;™ with x, >1 (®)

If we take the ultimate load, F, , from Figs. 2 and 3 we obtain x,, = 1.55 for the
C(T) and x,, = 1.20 for the M(T) specimen, respectively. An upper bound of the
limit load can be found from slip line theory and the limit load estimated from
upper and lower bounds if no experimental data are available. Fig. 11 shows the
energy dissipation rate normalized by the respective dimensionless limit load
factor, F, / B(W-a,)o; . The normalized steady state crack propagation energy
appears to be the same for both specimen geometries. The normalization does not
work well for the beginning (Aa < 2 mm) where the plastic zone size of the M(T)
specimen is still increasing, see Fig. 5.

CONCLUSIONS

The dissipation rate R is a physically more meaningful quantity for describing the
ductile tearing resistance of a structure than the conventionally used J integral. It
measures the increment of external work which is necessary to propagate the crack
by some amount, Aa, whereas J accumulates the plastic work done along a given
loading path. Whereas J-R curves keep rising even for steady state crack
extension, R decreases with Aa and approaches a stationary value, R .

J-R curves can be derived analytically from R(Aa) curves by integrating the
respective differential equations for bend- and tensile-type specimens. This allows
to extrapolate J-R curves for large stationary crack extensions beyond the
limitations of current test standards and even beyond available test data.

Obviously, R depends on the geometry and the type of loading of the specimen
or the structure. It can therefore not be transferred from a specimen to a
component in a straightforward way, but neither can J. It has been shown for a
C(T) and a M(T) specimen that this geometry dependence can be scaled by a limit
load factor. There is no general evidence that this scaling will work for other
geometries and materials. No answer can yet be given, either, as to whether or not
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this concept applies to real three dimensional configurations. But it seems that one
step forward has been done in understanding and quantifying "geometry
dependence” of R-curves. As R(Aa) curves can be easily re-evaluated from
existing J-R test records, it seems worthwhile to try to verify the normalization
procedure for further cases.
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