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ABSTRACT. This study considers a doubly periodic array of cracks in the anisotropic
elastic medium. The solution of the problem is reduced to a system of boundary integral
equations, which are solved using the boundary element method. To determine the
fracture propagation angle in the anisotropic medium Sh strain energy density
criterion is applied. The utilized crack growth equation is based on the empirical Paris
law.

INTRODUCTION

The study of multiple cracks interaction is oftexluced to the simulation of the regular
arrays of congruent cracks. This approach is afs&d in rock mechanics, mechanics of
composite materials etc.

There are three main approaches used in the boumetiament (boundary integral
equation) method for studying the doubly perioditssof cracks and inclusions and
effective properties of composite materials. Thstfone used by Liu [1] simulates
media with multiple inclusions (fibers). The secomdproach considers only one
representative volume element (RVE) of the compasiaterial with a regular structure.
Liu and Chen [2], Dong and Lee [3] adopted this rapph for the use with the
boundary element method (BEM). The third approadizes special boundary integral
equations for periodic problems. Lin’kov and Koshwe[4] and Lin’kov [5] used the
third approach and developed the complex varialid®Bor studying of the doubly
periodic arrays of cracks, holes and inclusionthéisotropic elastic medium. Clouteau
et el. [6] derived the integral equations for aigdéic 3D BEM. Due to its semi-
analytical nature, this approach allows not onlglébermine the stress intensity factors
for a doubly periodic cracks or a stress concentmatin holes and inclusions, but also
to study the effective properties of composite mal without additional consideration
of the boundary of the RVE and the periodic coodsi imposed on it. Thus, in
numerical modeling only the boundary of a craclkcamsidered, which significantly
decreases the size of the resulting system of mmsatThe shape of the RVE is defined
by two fundamental periods, which form the lattice.

The third approach is widely used for accurate ymislof doubly periodic sets of
cracks and thin inclusions. Wang [7] presentedesmély accurate and efficient method
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for computing the interaction of a set or multiskts of general doubly periodic cracks
in isotropic elastic medium. Xiao and Jiang [8]dséd the orthotropic medium with
doubly periodic cracks of unequal size under aatipl shear. Chen et al. [9] have
studied various multiple crack problems in elastici

However, the study of anisotropic solids containdagibly periodic arrays of cracks
is a challenging problem. Therefore, this papefo@ised on the development of the
efficient BEM approach for the analysis of regudats of cracks and their growth.

BOUNDARY INTEGRAL EQUATIONS FOR DOUBLY PERIODIC
PROBLEMS

The static equilibrium equations in the referencerdinate systemOxx,X, can be
given in the form [10]

o, +f=0 (i,j=1273, (1)
where g;; is a stress tensorf; is a body force vector. Here and further, the tins

summation convention is assumed. The comma at spbdenotes the differentiation
with the respect to the coordinate indexed aftercthimma, i.eu, ; =0du, /0x; .

Under the assumption of small strains the constautelations of linear anisotropic
elasticity are as follows [10]

Gj :Cijkm‘gkm’ (2)
where &, :(ui,j +Uj, )/2 is a strain tensory, is a displacement vectoG,,, are the

elastic stiffnesses (elastic moduli). With respextthe symmetry properties of the
elasticity tensor

Cijkm = Cjikm = Ckn]'i J 3)
EqQ. (2) can be rewritten in the following form:
Uij = Cijkmuk,m' (4)

Consider the 2D stress/strain field, in which dasgiments do not change with tke
coordinate of a solid, i.eu ;=0. Thus, the mechanical fields at the arbitrary €ros
section of a solid normal tg, axis are the same. In this case, the equilibrigoagon
(1) takes the form

o, +f=C +f =0 (i,k=1.,3;jm=12. (5)

Consider a doubly periodic set of cracks, whichraceleled by the line§_ (sUZ)
of displacement discontinuities (Fig. 1). Due tcee tlranslational symmetry of the
considered doubly periodic problem, the discontiesi of tractions Zt° and

jkmuk,jm

displacementsAu’ are identical for each of the contours (sCOZ). Therefore, the

system of boundary integral equations of a douldsigaic problem, which give the
solution to Eq. (5), can be written in the followiform [11]
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—Zu y) =] Ui (xy) Zt700dr (x) = [ T2 (x.y) Au; 0odr (x) + 17 (y),

1 st [ =

EAtio (y)=n] (y)[:ij +.[ DP (x,y) Zt (x)dr (x I SP(xy)Aul(x)dr (x )}
(6)

where the doubly periodic kernels® =[ T, D”ﬁp,sjﬁp] are explicitly defined in

Ref. [11], functionsl,” and =} define the external load [11].

Figure 1. A doubly periodic set of curved cracks

Average strains are as follows [11]
= AG@ D /[ D )2 _ 525D hom
(u,)=-00Pa] /(a)xla)x WP, )+u (Zn)

= AG® D D), 2) _ ,(2), (1) hom( =
<Ui,2>_ AU~ /(wxl W, Wy, C‘)Xz)+uivi (_km)

(7)

where uh"m(akm) are gradients of displacements in the homogensmdium caused

. T T .
by the far-field loado, ; ®® =[w§11),a)x(21’] and o? :[wif),wx(f’} are the period

vectors (see Fig. 1). Cyclic constants are equglip
Aul = uh"m( )(u‘k’ +AGY, AGY =0

AG? :Irg (U5 ()=t (%) =T, (x)Add (x) dr (x). (8)

FATIGUE CRACK GROWTH SIMULATION

Boundary integral equations (6) can be solved nigally using the direct boundary
element method. Since the singularity of correspandkernels of the periodic and
doubly periodic BIEs is the same as that of thepeoodic BIEs, for the numerical
evaluation of the weakly, strongly and hypersinguiategrals one can utilize
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quadratures and polynomial transformations of REZ], which smooth the integrand.
While studying cracks and thin inclusions it is eenient to use the special shape
functions [12], which accounts the square root @liagty at the crack tip. This allows
determination of the stress intensity factors usiegfollowing relation [12]

k® =lim O\/;meu() ©)

where k@ =[K,|,KI Ky " is a vector of stress intensity factors (SIE); is a real
Barnett — Lothe tensor [10]. Mechanical fields ifoaal system of coordinate®x;x,

with the origin O placed at the crack tip an@x;, axis directed along a tangent to the
crack are as follows [11]

—\/:Re{A Bk } o -\P Re{ Bk } (10)
where <\/7> :dlag[f \/72 ,\/73} Z, =X +p,X, =1 (cosH+ p, sind); p, are
Stroh eigenvalues [1OI;r,t9) are local polar coordinateg, and B are Stroh matrices,

which are completely defined by the elasticity ®n€;,., [10]; ¢ is a stress function.
The stress field near the crack tip equals [10, 11]

o, =[0,]=0, =%T Re{B(z%)B K"}

Based on Egs. (10) and (11) one can calculatetthimm £nergy density (SED) near
the crack tip

(11)

W(r,8)= J & = (ui,2¢i,1_ui,1¢i ‘2):rS(6?), (12)
where S(6) is a SED factor [13].

As stated by Sih [13], crack initiation will start a radial direction along which the
strain energy densith(é?) is a minimum. Additionally one should consider tiop

stressog,, , which is to be positive in the crack growth direc.

The crack growth rate is defined by the empirici$law
da
—=A(AK 13
dN ( ) (13)

whereda/dN is a rate of crack growth per cycl&; andn are empirical constants; and

AK =K, . -K
The boundary element method used allows efficiemulstion of fatigue crack

growth. Since only boundary mesh is required, thereo need to remesh the entire

RVE, but only to add two new boundary elementsadih hips of the crack inclined at an
angle defined by the Sih SED criterion [13].

I'min *
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However, the numerical simulation is stable if agpends crack tip elements of
approximately the same lengtka. This implies in different numbeAN of cycles per
simulation step. The latter is determined from @@&) as

N=—22_ (14)
A(LK)

If Aa is small enough, the numerical results are corerdrg

EFFECTIVE PROPERTIES OF A CRACKED ANISOTROPIC MATERIAL

To determine the effective properties of a crackeotropic material one has to solve
the problem for 5 linearly independent variantsanfaverage stres<37ij>, the best of

which are

1) (0,,) =1 Pa, (g} =0 ((i #2) O(j #1));
2) (0,,)=1Pa,(0,)=0 ((i#2)0(j # 2);
3) (0,)=1Pa,(0;)=0 ((i#3)0(j % 2));
4) (0y,) =1 Pa,(o—”>:o ((i#3)0(j#);
5) (0,,) =1 Pa,(0;)=0 ((i 1) 0(j # 2)).

Then a matrix

(u®) o (u®)
(ug) . (u)
(=] (us) C{u®) (15)
(us) (us?)
(u)+(uf) . (U +uf))

is the matrix of effective properties of MEE comip@smaterial, which relates an
average stress vectdi) =[(0,,),(0,,).(04,) (03, ,<0_12>]T with an average strain

vector () =[(£,),(£,,) (26.,) {26,) { 2,)] : (o) =(c){z). The superscript ahead of

<ui,j> in Eg. (15) denotes the variant of the appliedraye load. The values <zéﬂf"?>

used in Eq. (15) are determined using Eq. (7).

Proposed approach utilizes special boundary integmaations (6), which use the
doubly periodic kernels [11]. Thus, for determipatiof the effective properties of a
medium with a doubly periodic array of cracks o ko consider only the surface of
one crack, because Egs. (6), (7) already includgériodic boundary conditions at the
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unit cell. The shape of the RVE is defined by the periodse® and»® , which form
the lattice.

NUMERICAL EXAMPLE

Consider a glass/epoxy plate containing a doubhogie array of cracks of an initial
length 2a. Cracks form a square lattice, and the RVE side/gstimes greater than the
length of the crackd =4a). Mechanical properties of the glass/epoxy aréolsws:

E, =48.26 GPa;E, =17.24 GPay,, =0.29; G, =6.89 GPa. Material symmetry axes

are inclined to the Cartesian axes as shown inZi@rack paths are obtained for a
single crack (dashed lines) and for doubly periadhacks (solid lines) for different
values of the angler, which defines the direction of the material syrnmpaxes.

0.6—
‘ E, T @ T X,/a <
\ 4 X2 0.4—

\ ; -

0.2

Figure 2. Doubly periodic array of fatigue crachgylass/epoxy

One can see in Fig. 2 that the biggest inclinatiba crack path is observed for the
case, when material symmetry axes coincide withCthigesian ones. In this case due to
the anisotropy of the material, the path of a @inghck is winding. For different angles
a crack paths have different direction, and theimation of the crack path is bigger for
a doubly periodic cracks. Thus, crack interactiod anisotropy of a plate are essential
for study of crack propagation.
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CONCLUSION

The account of material anisotropy and crack imtigva is significant for determination
of a crack path. The developed boundary elemenbaphp allows accounting both.
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