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ABSTRACT. This study considers a doubly periodic array of cracks in the anisotropic 
elastic medium. The solution of the problem is reduced to a system of boundary integral 
equations, which are solved using the boundary element method. To determine the 
fracture propagation angle in the anisotropic medium Sih strain energy density 
criterion is applied. The utilized crack growth equation is based on the empirical Paris 
law. 
 
 
INTRODUCTION 
 
The study of multiple cracks interaction is often reduced to the simulation of the regular 
arrays of congruent cracks. This approach is often used in rock mechanics, mechanics of 
composite materials etc. 

There are three main approaches used in the boundary element (boundary integral 
equation) method for studying the doubly periodic sets of cracks and inclusions and 
effective properties of composite materials. The first one used by Liu [1] simulates 
media with multiple inclusions (fibers). The second approach considers only one 
representative volume element (RVE) of the composite material with a regular structure. 
Liu and Chen [2], Dong and Lee [3] adopted this approach for the use with the 
boundary element method (BEM). The third approach utilizes special boundary integral 
equations for periodic problems. Lin’kov and Koshelev [4] and Lin’kov [5] used the 
third approach and developed the complex variable BEM for studying of the doubly 
periodic arrays of cracks, holes and inclusions in the isotropic elastic medium. Clouteau 
et el. [6] derived the integral equations for a periodic 3D BEM. Due to its semi-
analytical nature, this approach allows not only to determine the stress intensity factors 
for a doubly periodic cracks or a stress concentration on holes and inclusions, but also 
to study the effective properties of composite materials without additional consideration 
of the boundary of the RVE and the periodic conditions imposed on it. Thus, in 
numerical modeling only the boundary of a crack is considered, which significantly 
decreases the size of the resulting system of equations. The shape of the RVE is defined 
by two fundamental periods, which form the lattice. 

The third approach is widely used for accurate analysis of doubly periodic sets of 
cracks and thin inclusions. Wang [7] presented extremely accurate and efficient method 
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for computing the interaction of a set or multiple sets of general doubly periodic cracks 
in isotropic elastic medium. Xiao and Jiang [8] studied the orthotropic medium with 
doubly periodic cracks of unequal size under antiplane shear. Chen et al. [9] have 
studied various multiple crack problems in elasticity.  

However, the study of anisotropic solids containing doubly periodic arrays of cracks 
is a challenging problem. Therefore, this paper is focused on the development of the 
efficient BEM approach for the analysis of regular sets of cracks and their growth. 
 
 
BOUNDARY INTEGRAL EQUATIONS FOR DOUBLY PERIODIC 
PROBLEMS 
 
The static equilibrium equations in the reference coordinate system 1 2 3Ox x x  can be 

given in the form [10] 

, 0ij j ifσ + =   ( ), 1,2,3i j = ,     (1) 

where ijσ  is a stress tensor; if  is a body force vector. Here and further, the Einstein 

summation convention is assumed. The comma at subscript denotes the differentiation 
with the respect to the coordinate indexed after the comma, i.e. ,i j i ju u x≡ ∂ ∂ . 

Under the assumption of small strains the constitutive relations of linear anisotropic 
elasticity are as follows [10] 

ij ijkm kmCσ ε= ,      (2) 

where ( ), , 2ij i j j iu uε = +  is a strain tensor; iu  is a displacement vector; ijkmC  are the 

elastic stiffnesses (elastic moduli). With respect to the symmetry properties of the 
elasticity tensor 

ijkm jikm kmjiC C C= = ,     (3) 

Eq. (2) can be rewritten in the following form: 

,ij ijkm k mC uσ = .      (4) 

Consider the 2D stress/strain field, in which displacements do not change with the 3x  

coordinate of a solid, i.e. ,3 0iu ≡ . Thus, the mechanical fields at the arbitrary cross-

section of a solid normal to 3x  axis are the same. In this case, the equilibrium equation 

(1) takes the form 

, , 0ij j i ijkm k jm if C u fσ + ≡ + =    ( ), 1,..,3;   , 1, 2i k j m= = .  (5) 

Consider a doubly periodic set of cracks, which are modeled by the lines sΓ  ( s ∈ℤ ) 

of displacement discontinuities (Fig. 1). Due to the translational symmetry of the 
considered doubly periodic problem, the discontinuities of tractions s

itΣ  and 

displacements s
iu∆  are identical for each of the contours sΓ  ( s ∈ℤ ). Therefore, the 

system of boundary integral equations of a doubly periodic problem, which give the 
solution to Eq. (5), can be written in the following form [11] 
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where the doubly periodic kernels dp dp dp dp dp, , ,ij ij ijk ijkU T D S =  K  are explicitly defined in 

Ref. [11], functions iI ∞  and ik
∞Ξ  define the external load [11].  

 

 
 

Figure 1. A doubly periodic set of curved cracks 
 
Average strains are as follows [11] 
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where ( )hom
,i j kmu σ  are gradients of displacements in the homogeneous medium caused 

by the far-field load kmσ ; 
1 2

T(1) (1) (1),x xω ω =  ω  and 
1 2

T(2) (2) (2),x xω ω =  ω  are the period 

vectors (see Fig. 1). Cyclic constants are equal to [11] 
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FATIGUE CRACK GROWTH SIMULATION 
 
Boundary integral equations (6) can be solved numerically using the direct boundary 
element method. Since the singularity of corresponding kernels of the periodic and 
doubly periodic BIEs is the same as that of the nonperiodic BIEs, for the numerical 
evaluation of the weakly, strongly and hypersingular integrals one can utilize 
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quadratures and polynomial transformations of Ref. [12], which smooth the integrand. 
While studying cracks and thin inclusions it is convenient to use the special shape 
functions [12], which accounts the square root singularity at the crack tip. This allows 
determination of the stress intensity factors using the following relation [12] 

( )(1)

0
lim

8s
s

s

π
→

= ⋅∆k L u ,     (9) 

where [ ]T(1)
II I III, ,K K K=k  is a vector of stress intensity factors (SIF); L  is a real 

Barnett – Lothe tensor [10]. Mechanical fields in a local system of coordinates 1 2Ox x′ ′  

with the origin O  placed at the crack tip and 1Ox′  axis directed along a tangent to the 

crack are as follows [11] 

( ){ } ( ){ }1 11 1
* *

2 2
Re , ReZ Z

π π
− −= =u A B k φ B B k ,  (10) 

where * 1 2 3diag , ,Z Z Z Z =   ; ( )1 2 cos sinZ x p x r pα α αθ θ′ ′= + = + ; pα  are 

Stroh eigenvalues [10]; ( ),r θ  are local polar coordinates; A  and B  are Stroh matrices, 

which are completely defined by the elasticity tensor ijkmC  [10]; φ  is a stress function. 

The stress field near the crack tip equals [10, 11] 
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Based on Eqs. (10) and (11) one can calculate the strain energy density (SED) near 
the crack tip 

( ) ( ) ( ),2 ,1 ,1 ,2

1 1
,

2 2ij ij i i i iW r u u rSθ σ ε ϕ ϕ θ= = − = ,   (12) 

where ( )S θ  is a SED factor [13]. 

As stated by Sih [13], crack initiation will start in a radial direction along which the 
strain energy density ( )S θ  is a minimum. Additionally one should consider the hoop 

stress θθσ , which is to be positive in the crack growth direction. 

The crack growth rate is defined by the empirical Paris law 

( )nda
A K

dN
= ∆ ,     (13) 

where da dN  is a rate of crack growth per cycle; A  and n  are empirical constants; and 

I max I minK K K∆ = − . 

The boundary element method used allows efficient simulation of fatigue crack 
growth. Since only boundary mesh is required, there is no need to remesh the entire 
RVE, but only to add two new boundary elements at both tips of the crack inclined at an 
angle defined by the Sih SED criterion [13]. 
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However, the numerical simulation is stable if one appends crack tip elements of 
approximately the same length a∆ . This implies in different number N∆  of cycles per 
simulation step. The latter is determined from Eq. (13) as 

( )n

a
N

A K

∆∆ ≈
∆

.     (14) 

If a∆  is small enough, the numerical results are convergent. 
 
 
EFFECTIVE PROPERTIES OF A CRACKED ANISOTROPIC MATERIAL 
 
To determine the effective properties of a cracked anisotropic material one has to solve 

the problem for 5 linearly independent variants of an average stress ijσ , the best of 

which are 

1) 11 1σ =  Pa, 0ijσ =  ( ) ( )( )1 1i j≠ ∧ ≠ ; 

2) 22 1σ =  Pa, 0ijσ =  ( ) ( )( )2 2i j≠ ∧ ≠ ; 

3) 32 1σ =  Pa, 0ijσ =  ( ) ( )( )3 2i j≠ ∧ ≠ ; 

4) 31 1σ =  Pa, 0ijσ =  ( ) ( )( )3 1i j≠ ∧ ≠ ; 

5) 12 1σ =  Pa, 0ijσ =  ( ) ( )( )1 2i j≠ ∧ ≠ . 

Then a matrix  
1
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...

...

...

...

...

u u

u u

u u

u u

u u u u

−
 
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 
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 
 
 
 + + 

c     (15) 

is the matrix of effective properties of MEE composite material, which relates an 

average stress vector 
T

11 22 32 31 12, , , ,σ σ σ σ σ=   σ  with an average strain 

vector 
T

11 22 32 31 12, , 2 , 2 , 2ε ε ε ε ε=   ε : =σ c ε . The superscript ahead of 

,i ju  in Eq. (15) denotes the variant of the applied average load. The values of ( )
,
k

i ju  

used in Eq. (15) are determined using Eq. (7). 
Proposed approach utilizes special boundary integral equations (6), which use the 

doubly periodic kernels [11]. Thus, for determination of the effective properties of a 
medium with a doubly periodic array of cracks one has to consider only the surface of 
one crack, because Eqs. (6), (7) already include the periodic boundary conditions at the 
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unit cell. The shape of the RVE is defined by the two periods ( )1
ω  and ( )2

ω , which form 
the lattice.  
 
 
NUMERICAL EXAMPLE 
 
Consider a glass/epoxy plate containing a doubly periodic array of cracks of an initial 
length 2a . Cracks form a square lattice, and the RVE side is two times greater than the 
length of the crack ( 4d a= ). Mechanical properties of the glass/epoxy are as follows: 

1E = 48.26 GPa; 2E =17.24 GPa; 12ν = 0.29; 12G = 6.89 GPa. Material symmetry axes 

are inclined to the Cartesian axes as shown in Fig. 2. Crack paths are obtained for a 
single crack (dashed lines) and for doubly periodic cracks (solid lines) for different 
values of the angle α , which defines the direction of the material symmetry axes. 
 

 
 

Figure 2. Doubly periodic array of fatigue cracks in glass/epoxy 
 

One can see in Fig. 2 that the biggest inclination of a crack path is observed for the 
case, when material symmetry axes coincide with the Cartesian ones. In this case due to 
the anisotropy of the material, the path of a single crack is winding. For different angles 
α  crack paths have different direction, and the inclination of the crack path is bigger for 
a doubly periodic cracks. Thus, crack interaction and anisotropy of a plate are essential 
for study of crack propagation. 
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CONCLUSION 
 
The account of material anisotropy and crack interaction is significant for determination 
of a crack path. The developed boundary element approach allows accounting both. 
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