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ABSTRACT. The Kitagawa-Takahashi (K-T) diagram, implemented by the El Haddad 
equation, relates the conventional fatigue limit to the crack size, enabling a boundary 
for the cyclic stress range to be established, below which an infinite life of the structural 
component may be, theoretically, ensured for any crack size due to the non-propagation 
of micro- and macrocracks. In order to account for the inherent random character of 
the fatigue phenomenon in real materials and the need of extending the K-T 
applicability to any prefixed number of cycles, advanced probabilistic S-N models 
should be considered to define the fatigue limit. In this way, a new basis towards a 
probabilistic Kitagawa-Takahashi-El Haddad approach is provided in agreement with 
the asymptotic matching proposed by Ciavarella-Monno.  

 
 

INTRODUCTION AND MOTIVATION 
 

The Kitagawa-Takahashi (KT) diagram [1] represents a boundary in terms of crack size 
and stress range for which infinite fatigue lifetime of structural or mechanical 
components can be safely ensured due to non-propagating micro- and macrocracks. 
Such fatigue life assessment can be related to both the classical fatigue limit concept, 
resulting from the experimental-based S-N approach, and the threshold stress intensity 
factor range, as defined by the crack propagation law. 

Even after the transcendent improvement provided by the intrinsic crack concept of 
El Haddad (EH) [2], two issues need to be dealt with: a) the extension of the KT-EH 
diagram to a fatigue limit for finite number of cycles, which is not necessarily identified 
with the endurance limit for N=∞, and b) a stochastic definition of the KT-EH diagram 
as a consequence of the variability of the basic fatigue functions being considered (S-N 
and crack growth rate curves). Both represent practical requirements related to structural 
integrity design. 

In this work, a new approach to the problem is supplied by considering the 
probabilistic S-N developed by Castillo and Fernández-Canteli [3], which provides a 
sound basis in the definition of the KT-EH line, permitting also the model to be 
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extended from infinite to any finite life, as already proposed by Ciavarella and Monno 
[4], which provide an interesting alternative to solve the first issue, whereas the 
limitations of the simplistic S-N field used, based on a truncated Basquin approach with 
absence of probabilistic considerations, evidence the need of further enhancement. 

Thus, the boundary between fracture and non-fracture can be optionally referred to a 
finite number of cycles for a certain probability of failure, because in the engineering 
practice a high, but finite, number of cycles, rather than infinity, are usually assumed for 
fatigue life. 

 
 

PROBABILISTIC CONCEPTS APPLIED TO THE K-T APPROACH 
 
In this work, only variability of the S-N field is considered, while a deterministic 
concept of the crack growth rate curve is for the present assumed [5] as a first attempt of 
introducing  probabilistic  considerations in the definition of the KT-EH diagram. 
 

Δσ

 
Figure 1. S-N field with percentile curves according to the regression model[3]. 

 
The proposed probabilistic model.  
According to the probabilistic regression model proposed by Castillo and Fernández-
Canteli [3] the fatigue life given stress range, and the stress range given lifetime are 
random variables following a Weibull distribution (Fig. 1): 
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where p is the probability of failure, N the lifetime in cycles, σΔ  the applied stress 
range, B represents the threshold value of the lifetime and C the endurance limit, or 
fatigue limit for N→ ∞, and β, δ and λ are, respectively, the shape, scale and location 
Weibull parameters. As soon as the five parameters are estimated, the model provides a 
complete analytical description of the probabilistic S-N field being dealt with. The 
percentile curves are hyperbolas sharing the asymptotes BN =log  and C=Δσlog  (see 
Fig. 1), the zero percentile curve represents the minimum possible required number of 
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cycles to achieve failure for different values of σΔlog . The percentile curves can be 
interpreted as representing different initial flaw sizes. 

Since the model extends the Wöhler field up to an unlimited number of cycles, an 
extrapolation of the lifetime is possible outside the range of number of cycles tested in 
the experimental program.  

The main limitation of the model, consisting in the absence of an upper bound in the 
LCF region, may be overcome by considering a new fatigue variable, maxεσ ⋅Δ , as the 
reference parameter controlling the fatigue process in the previous model. Once the 
model parameters in terms of maxεσ ⋅Δ  have been estimated, the S-N field may be 
reconverted to the conventional σΔ  variable using the stress-strain cyclic diagram of 
the material, for  instance as Ramberg-Osgood (R-O) curve. 

 
K-T diagram for a finite number of cycles to failure LN  
Unless otherwise specified, the S-N curves are generally related to a unique probability 
of failure, p=0.5 or p=0.05, though the scatter of experimental data requires the 
definition of the whole S-N field as percentile curves based on statistical principles. The 
fatigue behaviour of a structural component is mainly governed by its surface (or 
volume) state quality, implying roughness and imperfections that are preferential sites 
for crack nucleation and subsequent propagation. According to [3], the percentile curves 
can be assumed to be associated with the probability of the existence of a crack being 
less than a certain initial crack size, ia , initially unknown. Consequently, the fatigue 
failure is governed by the maximum crack size present in the specimen being tested so 
that percentile curves with increasing probabilities of failure are related to diminishing 
crack sizes: the percentile curve p=0, corresponding to the greatest, or worst, of the 
maximum crack sizes of the population, i.e., )max( max, aa wi = , which is denoted max-
max crack size (Fig. 2). Similarly, the upper percentile curve, p=1, corresponds to the 
minimum, or best, of the maximum crack sizes of the population, i.e., )min( max, aa bi = , 
which is denoted min-max crack size. For practical purposes, the definition of the latter 
can be relaxed identifying bia ,  as an initial crack size related to a high probability of 
failure, for instance, pb=0.90 or 0.95. The two curves associated with ai,w and ai,b 
represent the two limiting sizes of the initial maximum defect corresponding to the 
particular surface finishing of the tested material. According to [3], ai,w , related to the 
percentile curve p=0, is determined as  
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where thKΔ is the threshold SIF range, Y the geometric factor of the crack and Δσ0(∞) 
the endurance limit.  

For a given number of cycles to failure LN , see Fig. 2, two different stress ranges 

bσΔ  and wσΔ  ( wb σσ Δ>Δ ), are identified with the best and worst surface defects 
respectively. Consequently, for LN  as a reference lifetime, an engineering SIF 
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threshold engthK ,Δ can be found, particularly for the defect sizes ai,w and ai,b , but also for 
any crack size ai,m (ai,w > ai,m > ai,b ), to be given by 

mmimength aYK σπ Δ⋅=Δ ,,,  , (3)

where the stress range mσΔ  results from the percentile curve corresponding to am (see 
Fig. 2). For ∞→LN , the engthK ,Δ  becomes the true threshold value thKΔ  of the crack 
growth rate curve. 

Δσ

Δσ  (    )

Δσ  (    )

Δσ  (    )

 
Figure 2. Probabilistic concept applied to an experimental S-N curve for a given 

material. 
 

Note that, according to El Haddad [2], the intrinsic crack size is given as: 
2
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where 0σΔ  represents in this case the fatigue limit for LN number of cycles, pointing 
out that only for ∞→LN  the intrinsic initial crack size a0  coincides with the worst 
crack size ai,w. Applying the El Haddad equation to the evaluation of testing samples 
with varying surface states, i.e. intrinsic crack sizes a0, would provide different fatigue 
limits 0σΔ , i.e., unlike KT diagrams, evidencing dependency with respect to the 
particular surface state tested, thus, proving that such KT diagrams are not a material 
characteristic. On the contrary, a unique KT diagram is expected from the proposed 
approach despite the different endurance limits, associated with the worst crack sizes aw, 
obtained for the respective surface states. 

The assumption of a deterministic crack growth rate curve implies a deterministic 
relation between crack size and number of cycles to failure meaning that the KT-EH 
diagram is deterministic too [5].  Accordingly, the scatter of the experimental data are 
only related to the initial surface state of the material, implying simply uncertainties 
related to measurement precision or to material heterogeneity. 

For a certain initial crack size ai,m, the failure condition, Kfm=KIc, resulting for a 
given number of cycles to failure, NL, is equivalent to 
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Icfmm KNaYNK Δ=⋅Δ⋅=Δ )()( πσ  allowing us to express the final crack size ratio, 

mfwf aa ,, /  as: 
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Assuming a constant geometry factor Y during the crack propagation, the current 
crack size ratio r  
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remains constant along the whole propagation process (see Fig. 3(b)), in particular, from 
the beginning of the fatigue process, i.e., for the initial crack sizes mim aa ,=  
and wiw aa ,= , up to the final failure state, proving that on a logarithmic scale, the vertical 
distance c=log r  between the curves related to wia ,  and mia ,  remains constant all along 
the propagation process (see Fig. 3(b)). 

(a)

 

(b)

 
Figure 3. Crack growth curves for the best and worst initial defect cases for a given 

material (a) plotted in natural scale, and (b) plotted in logarithmic scale. 
 
While the initial worst crack size wia , , related to p=0, is determined from Eq. (2), 

another crack size, mia , , related to a given probability p (particularly the best one bia ,  
related to p=1, remaining, in principle, unknown) can be obtained by integration of the 
crack growth rate law, )(/ KGdNda Δ= , due to its uniqueness, for a generic number 

LN  of cycles to failure , i.e.: 
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Since Eq. (6) applies irrespective of the number of cycles considered, the above 
quantities can be used to write a system of two equations: 
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with 2)/( wmr σσ ΔΔ= , the solution of which provides the quantities wia ,  and mia ,  that 
can be finally associated with the worst and a generic surface state of the material, 
respectively. 
 
 
APPLICATIONS OF THE EXTENDED K-T DIAGRAM TO STEEL 1045 

 
In order to demonstrate its utility for fatigue life assessment of mechanical and 
structural components, the above proposed approach is applied to the standard carbon 
steel 1045 taking into account the mechanical and fatigue properties as reported in 
Table 1 [6]. 

 

Steel 1045 Chemical composition 
 Carbon Iron Manganese Phosphorus Sulphur 
 0.42 - 0.5 Balance 0.6 - 0.9 0.04 max 0.05 max 

      

 Mechanical properties 
 E  (GPa) yσ  (MPa) uσ  (MPa) K  n  
 202 382 621 4.0198E10 4.8077 
      

 Fatigue properties 
0σΔ  (MPa) 0a  (m) fcK  thK  C’ (m/cycle) m 
275 2.1218E-4 80 MPa m  7.1 MPa m 8.20E-13 3.50 

Table 1. Main chemical, mechanical and fatigue properties of the carbon steel 1045 
(from  [6]). 

 
In the present case, rather than using the probabilistic model proposed by [3], the S-N 

field is defined by determining the percentile curves corresponding, respectively, to the 
probabilities of failure p=0 and p=0.90, from the results of a previous testing program 
carried out for three different fatigue stress ranges ( MPa500,400,300=Δσ ), as 
illustrated in Fig. 4.  

The quantities )max( maxaaworst =  and )min( maxaabest =  are determined according to 
Eq. (6) by considering failure conditions related to cyclesN 510= , whereas, 

79.1)340/455()/( 22 ≅=ΔΔ= wbr σσ  (Fig. 4) or, equivalently, 583.0ln ≅= rc . 
By adopting the crack growth rate law by Donahue et al. [7], expressed by: 

m
thKaYCKG

dN
da )()( Δ−⋅⋅Δ⋅⋅=Δ= πσ  (9)

the crack growth law )()( NFeNa =  is assessed and used to get the expressions to be 
inserted into the system given by Eqs (8). 

Since this system of equations is not easily solvable by analytical or numerical 
standard techniques, it has been tackled by using a genetic algorithm (GA) [8-9]. 
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Figure 4. S-N curves corresponding to the 

p=0 and p=0.90 for the steel 1045.  

The method operates by selecting, 
along the iteration process, the best 
solution among different possibilities, 
trying to fulfil as better as possible the 
required value of the objective function, 
here identified as the known ratio 

79.1)/( 2 ≅ΔΔ= wbr σσ  for both the 
initial and the final crack sizes. 

After a short number of iterations, the 
sought values for bia ,  and wia ,  are 
obtained. The GA process produces a 
stable result for the two above quantities, 
namely -4

, 1012682.2 ⋅=bia  m and 
-4

, 1080701.3 ⋅=wia m, irrespectively of 
the stress range and the final number 

 

 
of cycles LN  adopted (see Eq.(8)). 
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Figure 5. Kitagawa-Takahashi diagram for the steel 1045 for different values of cycles  
to failure LN  (a) with probability distribution related to the finishing surface state (b). 

 
Finally, the generalised Kitagawa-Takahashi diagram has been obtained by 

integrating the Donahue equation starting from the initial crack size up to the fulfilment 
of the critical condition ( IcLiI KNaK Δ=Δ ),( ) for a given number of cycles LN  to 
failure; the initial crack size ia  has been assumed to be simply uniformly distributed in 
the interval bia , - wia , . As can be observed in Fig. 5, the initial crack size to be 
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considered in the KT diagram corresponds to the probability of failure assumed, this 
being dependent on the finishing surface state. 
 
 
CONCLUSIONS 
 
The main conclusions to be drawn from the present study are the following: 
- A probabilistic concept is proposed for being implemented in the Kitagawa- 

Takahashi-El Haddad diagram aiming at providing higher reliability in practical 
design cases. 

- The approach allows us to establish a connection between the probabilistic S-N field 
and the crack growth rate curve, the latter being assumed for the present to be 
deterministic.  

- The approach can be applied indistinctly either for an infinite or finite limit number 
of cycles. 

- Further study is needed to allow an extension of the proposed approach to define the 
KT diagram for small cracks. i.e., in the LCF region, as well as the consideration of 
stochastic crack growth rate curves, particularly in the threshold regime. 
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