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ABSTRACT. Fully automatic fatigue crack growth simulation system is developed
using S-version FEM (S-FEM). This system is extended to fracture in heterogeneous
material.  In the heterogeneous material, crack tip stress field becomes mixed mode
condition, and crack growth path is affected by inhomogeneous materials and mixed
mode conditions.  Stress Intensity Factors (SIF) in mixed mode condition are evaluated
using Virtual Crack Closure Method (VCCM). Criteria for crack growth amount and
crack growth path are used based on these SIFs, and growing crack configurations are
obtained.  At first, basic problem is solved, and results are compared with previously
reported ones. It is shown that this system gives adequately accurate estimation of SIFs.
Then 2-dimentional fatigue crack growth problems are simulated using this system.
crack growth problems are simulated using this system. The first example is a plate with
interface between hard and soft materials.  Crack tends to grow into soft material
through interface.  Second example is a plte with distributed hard inclusions.  Crack
takes zig-zag path by keeping away from hard inclusions. In each cases, crack growth
path changes in complicated manner. Changes of SIFs are also shown and discussed.
Finally it is shown that this system is useful for the prediction of residual fatigue life in
heterogeneous material.

INTRODUCTION

Fatigue crack growth is important problem for the integrity of structures.  To avoid
catastrophic accident, predictions of crack growth path and fatigue life are key
technologies.  As fatigue crack growth occurs in complicated structures, these
predictions have met serious difficulties.  FEM is usually used for these predictions, but
re-meshing process is needed for modeling of growing crack configurations, it has been
a bottleneck for the application of FEM to fatigue crack growth problems, especially in
three-dimensional field.
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Recently, several new techniques have been developed to overcome these difficulties.
Element Free Galerkin Method [1],  X-FEM [2] and Superposion-FEM(S-FEM[3]) have
been developed to make re-meshing processes easy, and predict complicated crack
paths.  Authors have developed fully automatic fatigue crack growth simulation
system[4], and applied it to three-dimensional surface crack problem, interaction
evaluation of multiple surface cracks[5] and evaluation of crack closure effect of surface
crack[6].  This system is developed for residual stress field problem, and Stress
Corrosion Cracking process is simulated [7].  Residual stress field is generated by
welding, and evaluation of crack growth in Heat Affected Zone (HAZ) is another
important problem.  In HAZ, grain size is different from other area, and mechanical
properties are different from those of base metals.  For the evaluation of SCC in such
areas, changes of material properties should be considered.  In S-FEM, local mesh is re-
meshed for each step of crack growth, and local area changes its’ shape in each step.  It
seems difficult to change material properties of local mesh following the change of local
mesh shape.

In this paper, this problem is solved, and crack growth simulation system in
heterogeneous material is developed.  In the following, this new method is explained
briefly, and example problem is simulated and compared with previous works to verify
this method.  Several practical problems are simulated and effect of existance of
interface and changes of material properties are studied and discussed.

APPLICATION OF S-FEM TO HETEROGENEOUS MATERIAL.

S-FEM is originally proposed by J. Fish [3]. As shown in Fig.1, a structure with a crack
is modeled by global mesh and local mesh. Global area, G , does not include a crack,
and coarse mesh is used for the modeling of global area. A crack is modeled in local
area, L , using fine mesh around crack tip. Local area is superimposed on global area
and full model is made. In each area, displacement function is defined independently. In
overlapped area, displacement is expressed by the summation of displacement of each
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Fig.1. Concept of S-FEM.
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area. To keep the continuity at the boundary between global and local area, GL ,
displacement of local area is assumed to be zero as shown in the following equation.
The derivatives of displacements can be written in the same way. These displacement
functions are applied to virtual work principle, as shown in Eq. 2, and the final matrix
form of S-FEM is obtained as shown in Eq. 3.
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where

(4)

In Eq. (3),    GLTLG KK  , and the stiffness matrix is symmetric.  GLK expresses the
relationship between local and global areas. They are calculated by following
integrations. By calculating this term with high accuracy, accurate FEM results are
obtained. By solving Eq. (3), both displacement fields of local and global areas are
obtained simultaneously. The detail of the theory was presented in the literature of one
of the author [8].
This method is applied to crack growth in heterogeneous material. As shown in Fig.2,
material properties are different from each other in material 1 and 2.  The phase
boundary is easily modeled by global mesh.  Local mesh is overlapped on global mesh.
 GLK and  LLK are calculated by eq.(4), and in  GLD and  LLD , material properties in
each material, are needed for these calculations.  As shown in Fig.2, integrations are

Fig.2  Global mesh and local mesh in heterogeneous material.
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conducted using Gaussian integration method in each local element, and material
properties at these Gaussian points are needed for integration.  In S-FEM analysis, all
Gaussian points in local elements belong to some global element. Then, material
properties of each Gaussian point is same as those of global element in which Gaussian
point belongs.  For this meaning, local mesh needs not to have material properties, and
it becomes easy to calculate eqs.(4) using material properties of global element.

VERIFICATION OF S-FEM FOR HETEROGENEOUS MATERIAL.

Figure 3 shows an example problem. A stratght crack exists parallel to interface of two
materials.  Inner pressure is applied to crack surfaces.  Crack length is 2a and distance
between crack and interface is expresses as d. In the following simulation,  Shear
Modulus G is changed in upper and lower materials, and Poisson’s ratio is assusmed to
be same as 0.3.  By changing distance d, several cases are simulated and normalized
Stress Intensity Factors (SIF) are evaluated.  As this is mixed mode problem, mode I
and mode II components are calculated.

SIF is calculated using VCCM.  As inner pressure is applied to crack surface,
following equation is used for evaluation of energy release rate by VCCM.

(5)

Infinite plate

a = 1.0 [mm]
P = 100 [MPa]
Shear modulus ratio

Γ = G2/G1
Poison`s ratio

ν1 = ν2 = 0.30
Fig. 3 Interfacial parallel crack loaded inner pressure
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where u is displacement, f is nodal force, and superscript P means nodal force due to
inner pressure.

Figure 4 (a) and (b)  show  results  when  G2=2G1.  By changing distance d, several
cases are sumulated.  Ordinates of these figures are Normalized stress intensity factors
in mode I and II, and abscissa is d/2a.  Results by previous papers by Boundary Element
Method [9] and Body Force Method [10] are also shown in these figures.  Results by S-
FEM agree very well with other solutions within 1% differences.  It is shown that this
system gives enoughly accurate results.

CRACK GROWTH IN TWO-PHASE MATERIAL

Figure 5 shows a two-phase plate with slant interface.  Young’s modulus of material 1
and 2 are expressed by E1 and E2, respectively.  Poisson’s ratios are assumed to be same
with each other. Two cases, where ratio of E1 to E2 is 4.0 and 0.25 are  simulated.
Initial crack is assumed to be in Material 1, and crack length is a, as shown in this figure.

Crack growth is assumed to occur due to fatigue by cyclic stress.  Crack growth rate
is determined by Paris’ law[11], shown in eq.(6), where C=1.67x10-12 and n=3.23
assuming aluminum alloy A7075-T6.  Crack growth direction, φ, changes by the
existance of interface, which satisfied eq.(7) [12], where KI and KII are mode I and
mode II stress intensity factors, respectively.

(6)

(7)

Figure 6 show result when E1/E2=4.0 where Young’s modulus of material 1 is smaller
than that of material 2.   Figure 6 (a) shows crack path, and 6 (b) shows changes of KI
and KII during crack growth.   As crack tip becomes near to interface, crack path
changes gradually, and grows along interface.  It does not grow into material 2 across
interface. It means that a crack in material 1 prefers to exists in the same material, and
does not grow in material 2.  During these crack growth process, KII value keeps nearly
zero, and KI increasese monotonically.  It means this crack growth is mode I dominant
process.

Figure 7 shows results when E1/E2=0.25, where Young’s modulus of material 1 is
larger than that of material 2.  In this case, initial crack exists in material 1, and it enters
into material 2 easily.  When it crosses interface, KI value decreases suddenly, and again
increases gradually.  KII value is nearly zero, but it shows small value when crack
crosses interface. In material 2, crack changes growing direction a little, and grows
perpendicular to cyclic stress direction.   In these simulations, strength of interface is
not considered.  In the real structure, strength of interface affects largely on crack
behaviors in heterogeneous material.  In this case, crack growth process becomes much
complicated.  By using this method, it is possible to simulate such complicated
phenomenon.
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Fig.5  Crack in two-phase material with slant interface.

(a) Crack path.                           (b) Changes of  KI and KII

Fig.6  Results when E1/E2=4.0.

(a) Crack path.                           (b) Changes of  KI and KII

Fig.7  Results when E1/E2=0.25.

CRACK GROWTH IN PARTICLE REINFORCED MATERIAL.

Figure 8 shows a model of particle reinforced material.  Four circular particles exist in
front of a crack.  Young’s modulus of particles is 4 times larger than tht of base material.

W=20mm,
H=80mm
Initial crack length

a0=2mm
Cyclic stress △σ=10Mpa
Stress ratio :  R=0.1
θ=30゜
E1/E2=4.0 or 0.25
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Crack growth simulation results are shown in Fig. 9.  Crack grows winding and by-
passing all particles and keeps growing in Material 1.  It does not enter particles.  SIF is
shown in Fig.9 (b).  KI value increases due to crack growth, but increasing rate is
changing.  KII keeps very low values, but it is not zero, which causes the change of
crack path direction. Through these crack growth proceses, crack growth rate is delayed
comparing with homogeneous material.

Fig.8 Model of particle reinforced plate.

(a) Crack path.                                  (b)  Changes of SIF.
Fig.9 Numerical results.

SUMMARY

It is shown that S-FEM successfully simulates complicated crack growth process in
heterogeneous material.  Though exampes shown in this paper are in two-dimensional
fiels, it is easy to apply this method to three-dimensional problem.  Using this technique,
fatigue crack growth in composite material, and stress corrosion cracking in welded
joint may be simulated well in near future.

W=30mm
H=120mm
D=5mm
r=12mm
b=12.5mm
Initial crack length a0=1mm
Cyclic stress △σ=10Mpa
Stress ratio :  R=0.1
E1=51.5Gpa,  E2=206GPa
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