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Abstract 

Reproducing Kernel Particle Method (RKPM) is a mesh-free technology which has proven 

very useful for solving problems of elastic-plastic fracture mechanics. In this study, the stress 

intensity factor (SIF) at the crack-tip in a work-hardening material is obtained using RKPM. 

Ramberg-Osgood stress-strain relation is assumed and the crack-tip SIF before and after 

formation of the plastic zone are examined. To impose the essential boundary conditions, 

penalty method is used. To construct the shape functions in the vicinity of the crack and 

crack-tip, both the diffraction and visibility criteria are employed and the crack tip region is 

also refined using more particles in two various model particle arrangements. The effects of 

different dilation parameters on SIF under plane-stress and plane-strain conditions are studied 

for plane-stress and plane-strain conditions. Results show that dilation parameter has a great 

impact on the performance of the RKPM and especially on the SIF value for the edge crack 

problems. The main objective is to study the effects of different dilation parameters on SIF 

value under plane-stress and plane-strain conditions at the crack-tip using diffraction and 

visibility criteria. 

Keywords: Mesh-free, Reproducing Kernel Particle Method (RKPM), Crack-tip, Stress 

Intensity Factor (SIF), Dilation Parameter, Particle Arrangement 

Introduction 

Recently, mesh-free methods have been increasingly utilized in solving various types of 

boundary value problems. Mesh-free methods eliminate some or all of the traditional mesh-

based view of the computational domain and rely on a particle view of the field problem. One 

of the oldest approaches in mesh-free methods is the Smooth Particle Hydrodynamics (SPH), 

which was first introduced in 1977 by Lucy Gingold and Monaghan [2]. SPH was first 

applied in astrophysics to model fluid dynamics phenomena. In 1993, Petschek [3] and 

Libersky extended SPH to solid mechanics. Recent advances on mesh-free methods are: 

element-free Galerkin method (EFGM) by Belytschko [1] at 1994, reproducing kernel 

particle method (RKPM) by Liu, et al. at 1996, and mesh-less local Petrov-Galerkin (MLPG) 

by Atluri [4] at 1999.  

 

Mesh-free methods go back to the seventies. The major difference to finite element methods 

is that the domain of interest is discretized only with nodes, often called particles. In recent 

years, much research have been done on mesh-free methods for solving differential equation 

problems including crack and also obtained satisfactory results. Among these methods 

Reproducing Kernel Particle Method (RKPM) has been used increasingly in fracture 

mechanic problems. Boundary value problems (BVPs) often have essential boundary 

conditions (EBCs) that involve derivatives, for example, in beams and plates, where slopes 
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are commonly enforced at the boundaries. Such problems are solved numerically using mesh-

free techniques like the RKPM and the EFGM. 

 

Throughout numerical analyses of fracture mechanics problems, the concept of shape 

function is crucial. The role of the shape functions is very important and decisive in 

numerical methods in which the approximation function of the system is replaced with the 

real function in the differential equation. Therefore, better and more accurate understanding 

of these functions and the effects of various parameters on their performance has significant 

impact on the effective analysis of different problems. 

 

In 1968, Rice [5] presented the concept of energy release rate by means of J-integral.  The J-

integral represents a way to calculate the strain energy release rate, or work (energy) per unit 

fracture surface area, in a material. An important feature of the J-integral is that it is path 

independent and it helps to calculate the J-integral at a far distance from the crack tip. In 

linear elastic fracture mechanics the J-integral has a direct relationship with the stress 

intensity factors (SIFs). In this study the J-integral has been used to calculate the SIF at the 

crack tip. 

 

Review of Reproducing Kernel Particle Method 

SPH method first was introduced in 1977 by Lucy Gingold and Monaghan [2]. In the SPH 

method, system response is reproduced by invoking the notion of a kernel approximation for 

f(x) on domain ῼ.

 

This method is not accurate on the boundary conditions, or when few 

particles are considered on the domain unless the lumped volume is carefully selected. 

RKPM is an alternative method to formulate the discrete consistency that is lacking in the 

SPH method. The foundation of the RKPM was proposed by Liu et al. [7] in 1993 and 

applied to computational mechanics. RKPM modifies the kernel function by introducing a 

correction function C(ξ;ξ-x). Adding the correction function in the kernel approximation 

significantly enhances the solution accuracy in comparison to the SPH method. The method 

of using corrected kernel approximation in reproducing a function is called Reproducing 

Kernel Particle Method. The reproduced kernel function of u(x) can be written as Equation1: 

   
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 dxxxuu R  ;)(

                                                    (1) 

 

where  x ;  is the modified kernel function on domain ῼ that is expressed by 

Equation2: 
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where )( xa   is window function,  xC ;  is a correction function, and a is the dilation 

parameter of the kernel function. Dilation parameter is defined in order to make more 

flexibility for the window function and this parameter will control the expansion of the 

window function on the domain. The correction function  xC ;  proposed by Liu et al. is 

shown by a linear combination of polynomial including some unknown coefficients. These 

unknown coefficients will be computed after imposing the boundary conditions. In order to 

get the equations for reproducing an arbitrary function, consider the following Taylor series 

expansion: 
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Substituting Equation4 into Equation1 leads to: 
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In order to simplify Equation5, the α
th

 degree moment matrix of function   a(ξ;ξ-x) is defined 

by: 
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Then Equation5 will be rewritten in the form of Equation6: 
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In order to exactly reproduce the n
th

 order polynomial function, the following conditions need 

to be satisfied; 
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If a correction function including n+1 unknown coefficient is defined, n+1 Equations of 9 can 

be satisfied simultaneously. The correction function is defined by Equation10: 
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It can be also expressed in matrix form: 
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where P
T
(ξ - x) is a set of basic functions and including n+1 components and β(ξ) is a set of 

unknown coefficient. Substituting Equation11 into Equation9 and considering definition of 

moment matrix in Equation6 leads to Equation13: 
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From Equation13 the unknown coefficient sets of βi(ξ) are obtained. Equation13 can also be 

rewritten as Equation14. 
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Or it can be shown in matrix form as Equations 15: 
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Moment matrix M can be shown as Equation 16: 

dxxxPxPM a

T )()()()(    (06)                                                                                   

Since the window function is always positive, all the components of moment matrix are 

linearly independent with respect to  a. Therefore, the moment matrix is nonsingular. Hence, 

simultaneously solving Equation15, the unknown coefficient sets of βi(ξ) are obtained: 

)0()()( 1 PM  
                                                                                           

(07)  

 

After obtaining the unknown coefficient sets βi(ξ) the correction function can be easily 

calculated from Equation10. 

 

Modification of RKPM Shape Functions  

Through engineering problems, the domain of the problem may contain non-convex 

boundaries, particularly the fracture ones having discontinuous displacement fields.  In such 

conditions, the shape functions associated with particles, whose supports intersect the 

discontinuity, should be modified. One of these criteria is the visibility introduced by 

Belytschko, Lu, Gu [1] (1994) and Krysl and Belytschko [14] (1996). In this approach, if the 

assumed light beam meets the discontinuity line, the shape function after the barrier will be 

cut. Therefore, a discontinuity is applied to the geometry. For example, if a crack is 

considered, the influence domain of particles I and J close to the crack tip using visibility 

criterion can be shown as Figure 1a. As can be seen, the particles that at particle I or J cannot 

be seen by an observer will be removed. In the other words, the window function and shape 

function of the particles which the crack or discontinuity prevent from reaching the light 

beam will be modified to amount to a zero as shown in Figure 1b.  

(a)     (b)          

Figure 1.  (a) Modified Influence Domain (b) Modified Window Function Contour of the 

Particles Next to the Line of Discontinuity Using Visibility Criterion 

 

Diffraction criterion (Organ and Belytschko [1] in 1996) is based on the bending of the light 

beam which has been described in the visibility criterion around a tip discontinuity. Consider 

the end of the discontinuity line in Figure 3. If the distance between the crack tip and the end 

of the arc is called d for particle I, then a circle with the center being the crack tip and radius 

of d is drawn. Areas outside the circle and behind the discontinuity are removed and the 

amount of the shape function in these areas will be zero (Figure 2). 
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(a)   (b)  

Figure 2.  (a) Modified Influence Domain (b) Modified Window Function Contour of the 

Particles Next to the Line of Discontinuity Using Diffraction Criterion 

 

Stress Intensity Factor 

The main purpose of fracture mechanics is to determine the status of cracks in different 

loading conditions. Stress, strain, displacement, and energy fields are required to obtain a 

driving force for crack growth. SIF and J-integral are two important concepts of crack 

problems. SIF is used to quantify the stress field around the crack tip. Many methods have 

been developed to determine the stress intensity factor. One of these methods to calculate the 

stress intensity factor is J-integral. If a node is considered with distance r and angle of α with 

the x-axis in the vicinity of the crack edge, then the stress field in this node is calculated 

according to the Irwin method in different crack modes. Therefore, stress field in the crack tip 

for linear elastic materials is calculated by Equation 18: 

)(
2




 ijij f
r

K
                                                                                                                   (08) 

K parameter is the SIF for different modes in the crack tip, and shown KI, KII, and KIII are for 

the first, second and third mode. Values of these coefficients are determined according to the 

dimensions and loading condition of the problem. Therefore, the SIF relationship is 

calculated from the analysis of the geometrical and loading condition. KI, KII, and KIII are 

physically the intensity of force transfer at the crack tip due to creation of the crack in the 

material. SIF plays an important role as a failure parameter. Rice (1968) also showed that this 

integral has linear elastic attitude with the energy release rate and was independent of the 

path around a crack. The two-dimensional J-integral was defined as Equation 19: 

 
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where W is strain energy density, σ is stress tensor, n is the normal to the curve Γ, and u is the 

displacement vector. The strain energy density is given by: 
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Also, J-integral can be obtained in terms of SIF of the first, second, and third mode.    
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where μ is shear modulus, E  is modulus of elasticity, and ν is poisson ratio. An important 

feature of the J-integral is that it is path independent and this helps to calculate the J-integral 

in a far distance from the crack tip. Then SIF is calculated from Equation 22 for plane-stress 

and plane-strain conditions:
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Edge Crack Modeling in RKPM 

With what was stated in previous, and using a FORTRAN program that was written for 

solving the liner elastic on a steel plate with specified dimension using RKPM. The stress, 

strain, and displacement field in x and y direction in all computational particles and 

calculation of SIF under plane-stress and plane-strain conditions were obtained. Penalty 

method is used to apply the boundary conditions. Penalty coefficient, β, is adopted as 10
6
 E, 

in which E is Young’s modulus. A rectangular steel plate is selected with dimensions of 21 

m
2
. An edge crack is considered with a length of 0.2 m in the middle of the plate. A tensile 

stress of 150 MPa is applied at the bottom and the top of the plate. The loading increment is 

assumed 10 MPa. Roller constraint is used for the plane in front of the crack and pin 

constraint is used for the front face of the plate (Figure 3).  

 
Figure 3. Domain and Boundary Conditions 

 

Spline 3
rd

 degree is used as a window function. The modulus of elasticity of the plate is 

207,000MPa, Poisson ratio of 0.3 and hardening parameter n=10. The problem is investigated 

in three different conditions: (1) 800 particles uniformly scattered on the surface of the plate, 

and 28 particles positioned on the circles with angles of 45 degree around the crack tip 

(Figure 4), (2) 800 particles uniformly scattered on the surface of the plate, and 60 particles 

are positioned on the circles with angles of 22.5 degree around the crack tip (Figure 5). 
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Figure 4. Star Arrangement (a-model)                         Figure 5. Circle Arrangement (b-model) 

 

For this plate, dilation parameters are compared for two visibility and diffraction criteria. 

Two different arrangements: a-model and b-model arrangements are considered for the 

particles as shown in Figures 4 and 5. The Gaussian number is considered to be equal to 3. 

Figures 6 to 9 show SIF versus dilation parameter in elastic and plastic conditions. It can be 

concluded that b-model arrangement using diffraction criterion has the better results. In 

comparing between the visibility and diffraction methods to modify the shape functions, the 

diffraction criterion seems to have better results for the SIF in both the elastic and plastic 

analysis. 

 
Figure 6. SIF vs. Dilation Parameter in a-model Particle Arrangement Using Diffraction 

Criterion  

 
Figure 7. SIF vs. Dilation Parameter in a-model Particle Arrangement Using Visibility 

Criterion 

 
Figure 8. SIF vs. Dilation Parameter in b-model Particle Arrangement Using Diffraction 

Criterion  
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Figure 9. SIF vs. Dilation Parameter in b-model Particle Arrangement Using Visibility 

Criterion  

 

The FORTRAN program developed for the elastic-plastic material is able to recognize the 

yielded particles in according to Von-Mises criterion. The crack tip region was refined using 

more particles in the a-model and b-model particle arrangements. For the same plate with 

dimensions 21 including 828 particles, and 860 particles SIF graphs are shown for plane 

strain and stress conditions. Tensile stress of 150 MPa is applied at the bottom and the top of 

the plate. In each 10 MPa loading increment, the SIF values are calculated. Figure 10 shows 

the SIF values versus tensile stress for plane-stress and plane-strain conditions. 

 

 

 

Figure10. SIF Values vs. Tensile Stress  

 

Conclusions 

1) When the dilation parameter increases for all particles in plastic analysis, the difference of 

the J-integral in fully plastic regions and fully elastic regions will increase. The reason for 

this is that when the crack is analyzed in the elastic-plastic condition, for the particles in 

crack tip with less dilation parameter J-integral is calculated in fully plastic and domain 

of influence domain does not enter to elastic region. Also, the SIF versus dilation 

parameter graphs show that increasing the density of particles at the crack tip using b-

model particle arrangement will result in more realistic answers for SIF. 

 

90

110

130

0.11 0.13 0.15 0.17 0.19

S
IF

 

Dilation Parameter 

SIF_Elastic

SIF_Elastic_Exact

SIF_Plastic

0

20

40

60

80

100

120

140

160

0 50 100 150 200

S
tr

es
s 

In
te

n
si

ty
 F

a
ct

o
r 

Tensile Stress (Mpa) 

Plane-stress

Plane-strain

902

Carpinteri
Rettangolo



The 4
th

 International Conference on “Crack Paths” 

 

 

2) In comparing between the visibility and diffraction methods to modify the shape 

functions, the Diffraction criterion seems to have better results for the SIF in both the 

elastic and plastic analysis. 

 

3) Stress Intensity Factor at the crack tip for the plane-stress condition is bigger than that in 

the plane-strain condition. The reason for this is due to limitations in the third dimension 

for the plane-strain condition (Figure 10). 
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