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Abstract 

In recent years, much research have been done on mesh-free methods for solving differential 

equation problems including crack and also obtained satisfactory results. Among these methods 

Reproducing Kernel Particle Method (RKPM) has been used increasingly in fracture mechanic 

problems. RKPM is a meshfree technology which has proven very useful for solving problems of 

fracture mechanics. In this study, it is proposed to obtain the mode I plastic zone size and shape 

at the crack-tip in a work-hardening material using RKPM. Ramberg-Osgood stress-strain 

relation is assumed. Results including plastic zone shape are compared with finite element 

method (FEM) to show the accuracy of RKPM. Results show that the plastic zone size in crack 

tip for the plane-strain condition is bigger that plane-stress condition. The reason can be stated 

that in plane-strain condition due to limitations in third dimension, stress is created in the third 

dimension (z-direction) and cause to increase the daviatoric stress according to J2-Deformational 

theory and also cause to increase in plastic zone size. The main objective is to obtain the mode I 

plastic zone shape at the crack-tip in a work-hardening material using RKPM and FEM. 

 

Keywords: Reproducing Kernel Particle Method (RKPM), Mode I Crack, Plastic Zone Size, 

Finite Element Method, Crack Tip, Ramberg-Osgood. 

 

Introduction 

Recently, meshfree methods are increasingly utilized in solving various types of boundary value 

problems. Meshfree methods eliminate some or all of the traditional mesh-based view of the 

computational domain and rely on a particle view of the field problem. One of the oldest 

approaches in meshfree methods is the Smooth Particle Hydrodynamics (SPH) which was first 

introduced in 1977 by Lucy Gingold and Monaghan [2]. SPH was first applied in astrophysics to 

model fluid dynamics phenomena. In 1993, Petschek [3] and Libersky extended SPH to solid 

mechanics. Recent advances on meshfree methods such as, element-free Galerkin method 

(EFGM) by Belytschko et al. [7] at 1994, reproducing kernel particle method (RKPM) by Liu, et 

al. [1] at 1996, meshless local Petrov-Galerkin (MLPG) by Atluri et al. [13] at 1999. Meshfree 

methods go back to the seventies. The major difference to finite element methods is that the 

domain of interest is discretized only with nodes, often called particles. 

 

There have been two widely used treatments, namely visibility and diffraction for dealing with 

the internal discontinuity in fracture mechanics. Mesh-free methods go back to the seventies. The 
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major difference to finite element methods is that the domain of interest is discretized only with 

nodes, often called particles. In recent years, much research have been done on mesh-free 

methods for solving differential equation problems including crack and also obtained satisfactory 

results. Among these methods Reproducing Kernel Particle Method (RKPM) has been used 

increasingly in fracture mechanic problems. Boundary value problems (BVPs) often have 

essential boundary conditions (EBCs) that involve derivatives, for example, in beams and plates, 

where slopes are commonly enforced at the boundaries. Such problems are solved numerically 

using mesh-free techniques like the RKPM and the EFGM. 

 

It is recognized that plastic deformation will occur at the crack tip as a result of the high stresses 

that are generated by the sharp stress concentration.  To estimate the extent of this plastic 

deformation, Irwin equated the yield strength to the y-direction stress along the x-axis and solved 

for the radius.  The radius value determined was the distance along the x-axis where the stress 

perpendicular to the crack direction would equal the yield strength; thus, Irwin found that the 

extent of plastic deformation was  
2
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Subsequent investigations have shown that the stresses within the crack tip region are lower than 

the elastic stresses and that the size of the plastic deformation zone in advance of the crack is 

between ry and 2ry.  Models of an elastic, perfectly plastic material have shown that the material 

outside the plastic zone is stressed as if the crack were centered in the plastic zone. Figure1 

describes a schematic model of the plastic zone and the stresses ahead of the crack tip. 

 
 

Figure1. Yield Model for Crack Tip 

 

Review of Reproducing Kernel Particle Method 

SPH method first introduced in 1977 by Lucy Gingold and Monaghan [2]. In SPH method, 

system response is reproduced by invoking the notion of a kernel approximation for f(x) on 

domain ῼ by the following equation: 

   


 dxuxu a

R )(

                                                                                                        (2)
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Where u
R
(ξ) is the approximation function, ῼ is the domain of intrest, ϕa(ξ-x) is a kernel 

function, and a is the smoothing parameter. This method is not accurate on the boundary 

condition or when few particles are considered on the domain unless the lumped volume is 

carefully selected which is a very hard and time consuming work. RKPM is an alternative 

method to formulate the discrete consistency that is lacking in SPH method. The foundation of 

RKPM proposed by Liu et al. [1] in 1993 and was first applied to computational mechanics. 

RKPM modifies the kernel function by introducing a correction function C(ξ;ξ-x). Adding the 

correction function in the kernel approximation significantly enhances the solution accuracy in 

comparison to SPH method. The method of using corrected kernel approximation in reproducing 

a function is called Reproducing Kernel Particle Method. The reproduced kernel function of u(x) 

can be written as: 

     dxxxuuR  ;)(
                                                                                                         (3)

 

Where ϕ a(ξ;ξ-x) is the modified kernel function on domain ῼ that is expressed by: 
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Where ϕa(ξ-x) is window function, C(ξ;ξ-x) is correction function, and a is the dilation parameter 

of the kernel function. Dilation parameter is defined in order to make more flexibility for the 

window function and this parameter will control the expansion of the window function on the 

domain. The correction function C(ξ;ξ-x) proposed by Liu et al. [1] is shown by a linear 

combination of polynomial including some unknown coefficients. These unknown coefficients 

will be computed after imposing the boundary conditions. Consider the following Taylor series 

expansion in order to get the equations for reproducing an arbitrary function: 
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Substituting Equation 6 into Equation 3 leads to: 
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In order to simplify the Equation 7, the αth degree moment matrix of function ϕ a(ξ;ξ-x) is 

defined by: 

     


 dxxxm a 


 ;

                                                                                                    (8)

 

Then the Equation 7 will be rewritten in the following form: 
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In order to exactly reproduce nth order polynomials function, the following conditions need to be 

satisfied; 
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Or in summary: 

  nm o ,...,2,1,0;                                                                                                   (11)
 

If a correction function including n+1 unknown coefficient is defined, n+1 equation of 11 can be 

satisfied simultaneously. The correction function is defined by: 
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It can be also express in matrix form: 

     C x x      P β
                                                                                                    (13)

 

Where P
T
(ξ - x) is a set of basic functions and including n+1 components and β(ξ) is a set of 

unknown coefficient. Substituting Equation 13 into Equation 11 and helping Equation 8 leads to: 
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From the Equation 14 the unknown coefficient sets of βi(ξ) is obtained. The Equation 14 can be 

also rewritten as Equation 16. 

     am x x dx


    
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                                                                                               (15) 

    0    Μ β P
                                                                                                                      (16)

 

Moment matrix M can be shown like: 
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Since the window function is always positive, all the components of moment matrix are linearly 

independent with respect to ϕa therefore the moment matrix is nonsingular. Hence 

simultaneously solving Equation 16 the unknown coefficient sets of βi(ξ) are obtained: 

    0   β Μ P
                                                                                                                  (18) 

After obtaining the unknown coefficient sets βi(ξ) the correction function can be easily 

calculated. Here sine and cosine functions are reproduced using 52 nodes in one period with 

dilation parameter of equal twice the distance between nodes (Figures 2 and 3).  

 

 

Figure2. Reproducing Sinuous function 

 
Figure3. Reproducing Cosines function 

 

Edge Crack Modeling in RKPM 

With what was stated in previous, and using a FORTRAN program that was written for solving 

the liner elastic on a steel plate with specified dimension using RKPM. The stress, strain, and 

displacement field in x and y direction in all computational particles under plane-strain 

conditions were obtained. Penalty method is used to apply the boundary conditions. Penalty 
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coefficient, β, is adopted as 10
6
 E, in which E is Young’s modulus. A rectangular steel plate is 

selected with dimensions of 2.55 cm
2
 (21 in

2
). An edge crack is considered with a length of 

0.5 cm (0.2 inch) in the middle of the plate. A tensile stress of 70 MPa (10 ksi) is applied at the 

bottom and the top of the plate. The loading increment is assumed 7 MPa (1 ksi). Roller 

constraint is used for the plane in front of the crack and pin constraint is used for the front face of 

the plate (Figure 4). Spline 3
rd

 degree is used as a window function. The modulus of elasticity of 

the plate is 207000 MPa (30,000 ksi), Poisson ratio of 0.3 and hardening parameter n=10. The 

problem is investigated using 800 particles uniformly scattered on the surface of the plate, and 53 

particles positioned on the circles with angles of 45 degree around the crack tip. 

       

Figure4. Domain and Boundary Conditions 

The FORTRAN program developed for the elastic-plastic material is able to recognize the 

yielded particles in according to Von-Mises criterion. For the same plate with dimensions 21 

including 853 particles, effective stress is shown for plane-strain conditions. The crack tip region 

was refined using more particles in the circle and star arrangements. In this problem, dilation 

parameter is 0.1 for the refined particles and is 0.13 for the rest of particles. Also, to have a better 

insight of stress distribution around the crack tip, the contours of the effective stresses are 

outlined in Figure 5.  

 
Figure5. Contours of Effective Stress using RKPM  
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Finite Element Model 

A numerical analysis was performed using finite element program ANSYS12 to exhibit the 

efficacy of RKPM in analyzing crack problems. The model considered the measured geometry, 

material properties and initial edge crack at the middle of the plate. Quadratic plane strain 

elements were used throughout the entire domain with a mesh size of 0.01  0.01.  Ideal 

boundary conditions were chosen as shown in Figure 6. A cubic steel plate is selected with 

dimensions of 2.55 cm
2
 (21 in

2
) and thickness of 0.64 cm (0.25 inch). An edge crack is 

considered with lengths of 0.5 cm and 1 cm (0.2 and 0.4 inch) in the middle of the plate. A 

tensile force of 16191 N (3640 lbs) is applied at the bottom and the top of the plate. 13045 

elements are used for the sample with 0.2W crack length. Finer mesh is used in the crack tip. 

Figures 7 and 8 show the stress and displacement contour in Y-direction throughout the plate. 

From Figure 7, it can be seen that the results of RKPM analysis are coincident with FEM results. 

      
Figure6. 3-dimensional Crack Modeling in ANSYS 

 

(a) a= 0.2W   (b) a= 0.4W 

Figure7. Contours of Stress in Y-direction in psi 
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(a) a=0.2W  (b) a=0.4W 

Figure8. Contours of Displacement in Y-direction in inch 

Conclusion 
1) With increasing the degree of correction function in RKPM method, the number of 

Gaussian points needs to be increased to achieve more accurate answer. Also with 

increasing the number of Gaussian points, dilation parameter needs to be increased to 

achieve more accurate answer. 

2) The plastic zone size in crack tip for the plane-stress condition is bigger that plane-strain 

condition. The reason can be stated that in plane-strain condition due to limitations in 

third dimension, stress is created in the third dimension (z-direction) and cause to 

decrease the deviatoric stress according to J2-Deformational theory and also cause to 

decrease in plastic zone size. 

3) Figures 2 and 3 show that only with 53 nodes we can exactly reproduce the sinuous and 

cosine functions using RKPM. 
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