
Crack paths near the interface between anisotropic
solids

M. Specovius-Neugebauer1, M. Steigemann1, S. A. Nazarov2, and
H.A. Richard3

1Institute of Mathematics, University of Kassel, Germany,
Heinrich-Plett-Str. 40, 34132 Kassel, specovi@mathematik.uni-kassel.de
2 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences,
St. Petersburg, Russia
3Institute of Applied Mechanics, University of Paderborn, Germany,
Pohlweg 47-49, 33098 Paderborn, richard@fam.upb.de

ABSTRACT. If a crack approaches the interface between two dissimilar anisotropic
materials various scenarios can happen. The question whether the crack will reach
or even penetrate the interface depends on the mismatch of elastic moduli in the two
materials. This contribution is devoted to the question whether a crack will reach the
interface when the distance of the crack tip and the interface are small compared to
the distance of the crack tip to the outer boundary. The energy release is calculated
using the method of matched asymptotic expansions. Other than for the calculation
of the ERR in homogeneous materials here the reference problem is the situation
when the crack has already reached the interface.

INTRODUCTION

The application of anisotropic composite materials in modern engineering leads to
new challenges in fracture mechanics. If a crack approaches an interface between
two different anisotropic materials experiments show that the crack can stay stuck
at the interface, it may pass through the interface or be deflected.

In this contribution we consider a straight crack starting from the boundary in
a body composed of two dissimilar anisotropic brittle materials as indicated in the
figures. In particular we use energy arguments to address the following problem:
Suppose the the crack tip is located in a small distance ∆a from the interface, is it
possible that the crack propagates and reaches the interface? In order to do so we
must calculate the energy release rate if the crack tip moves from the point (−∆a, 0)
to the point (0, 0). To be more specific, we consider a plane elasticity problem: Let
Ω be a domain in the plane R2 with boundary Γ, the closure Ω represents a body
composed of two materials with related Hooke tensors A1 and A2, respectively.
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The interface I is located on the x2-axis, while the crack Ξ−∆a is located on the x1

axis:
Ξ−∆a = {(x1, 0) ∈ Ω, x1 ≤ −∆a},

in particular Ξ0 corresponds to the crack with tip at the interface I. Let u−∆a be
the displacement field solving the elasticity problem,

−∇ · σ = 0 in Ω−∆a = Ω \ Ξ−∆a,

σ12 = σ22 = 0 on Ξ−∆a,±, σ · n = p on Γ,
(1)

where n denotes the external unit normal vector. We have Hooke’s law

σ = A(x) · ε, A(x) =

{
A1, x1 < 0

A2, x1 > 0.
(2)

Furthermore, we have to assume that the external loading p is self balanced, that
is
∫

Γ
pi = 0, i = 1, 2,

∫
Γ
p1x2 − p2x1ds = 0. In addition we require the continuity of

the displacement fields and normal stresses at the interface I: on the interface I:

u(0+, x2) = u(0−, x2), σi1(0+, x2) = σi1(0−, x2). (3)

The associated potential energy U can be considered as a function of the distance
∆a (we use the sum convention):

U(−∆a) =
1

2

∫
Ω−∆a

σijεij −
∫

Γ

pjujds.

In order to decide whether the crack can reach and eventually penetrate the interface,
the following condition must be fulfilled for all (small) values of ∆a:

−∆U = U(−∆a)−U(0) > 2γ0∆a, (4)

where 2γ1∆a represents the energy to produce the new surface, that is 2γ1 is the
critical energy release rate in the first material. Problems of this type were studied
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for isotropic materials for example in [1], [2].

POWER LAW SOLUTIONS AND WEIGHT FUNCTIONS

Usually the energy release rate is expressed in terms of the stress intensity factors
related to the starting point of the crack growth which would be the point (−∆a, 0)
here. However, if ∆a is small it is more adequate to use the domain Ω0 with crack tip
on the interface I as a reference configuration. Then the change ∆U of the potential
energy is expressed with coefficients of the near field expansion of the displacement
field u0 around the tip (0, 0). To this end we need the power law solutions X i, Y i

(e.g. [3, 4]) to the elasticity problem in composites, which are but solutions to the
elasticity problem in the plane with semi-infinite crack Ξ∞,± = {(r, ϕ) : ϕ = ±π},
(r, ϕ polar coordinates around the crack tip (0, 0)):

− divσ = 0 in R2 \ Ξ∞,±, σ12 = σ22 = 0 on Ξ∞,±, (5)

completed with Hooke’s law (2) and the transmission condition (3). There are always
two sequences of power-law solutions

Xj(r, ϕ) = rλjΦj(ϕ),Reλj > 0, Y j(r, ϕ) = r−λjΨj(ϕ), (6)

the numbers λj being generalized eigenvalues. For our purpose it is enough to
consider only the values close to zero. For homogenous solids that is A0 = A1 it is
well known [5, 6] that λ = ±1/2 are double eigenvalues with related pairs of power-
law solutions of the form (6). If the Hooke tensors are different and in particular
related to anisotropies the following situations may occur as perturbations of the
eigenvalue λ = 1/2:

Case 1: Two simple real eigenvalues 0 < λ1 ≤ λ2 < 1 with X i = rλiΦi(ϕ),

Case 2: A pair of conjugate complex eigenvalues λ1 = λ, λ2 = λ with

X1 = X = rλΦ(ϕ), X2 = X = rλ Φ(ϕ).

Case 3: A double real eigenvalue 0 < λ < 1 with

X1 = rλΦ1(ϕ), X2 = rλ ln rΦ1(ϕ) + rλΦ2(ϕ).

Case I appears always if the two materials are isotropic [7], the eigenvalues are found
as roots of a transcendental equation. In [8] conditions on the elastic moduli were
derived under which case 2 or 3 happen. The displacement field u0 has the near
field decomposition near the tip (0, 0):

u0 ∼ K1X
1 +K2X

2 + . . . , (7)
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for a complex eigenvalue λ this simplifies to

u0 ∼ 2 Re(KX) + . . . = 2(ReK ReX − ImK ImX) + . . .

For each pair X1, X2 of power-law solutions there exists a pair of dual power-law
solutions

Y i = r−λiΨi(ϕ), i = 1, 2 Case 1 (8)

Y 1(x) = r−λ Ψ(ϕ), Y 2(x) = r−λΨ(ϕ) Case 2 (9)
Y 1(x) = r−λΨ1(ϕ)− r−λ ln rΨ2(ϕ), Y 2(x) = r−λΨ2(ϕ). Case 3 (10)

By Clayperon’s theorem the potential energy can be represented as an integral over
the external boundary:

U(−∆a) = −1

2

∫
Γ

p · u−∆a ds, hence ∆U =
1

2

∫
Γ

p · (u−∆a − u0) ds, (11)

which means we can calculate the energy release if we know the difference u−∆a−u0

on the external boundary Γ. To calculate this as least asymptotically we use the
method of matched asymptotic expansions [9, 10, 11]. For small ∆a, near the
external boundary Γ, the solution u−∆a will not differ too much from the solution
u0, hence u−∆a is approximated by an outer expansion

u−∆a(x) ∼ u0(x) + a1ζ
1(x) + a2ζ

2(x) + . . . , |x| � ∆a. (12)

The functions ζj are so-called weighting functions (cf. [12],[13]),

ζj = Y j + ζ̃j

here ζ̃j are solutions to the problem (1), (3) for ∆a = 0 and p = −σ(Y j), hence ζj
are singular at the crack tip (0, 0), moreover

ζj ∼ Y j +mjkX
k + . . . , |x| → 0. (13)

Depending on the fixing of Xj, the dual power law solution Y j can always be nor-
malized in such a way that

Kj =

∫
Γ

p · ζjds, resp. K =

∫
Γ

p · ζds, (14)

which plugged into (11) gives

2∆U = K1a1(∆a) +K2a2(∆a) + . . . , or
∆U = Re(Ka1(∆a)) + . . . ,

(15)

respectively, observe that in Case 2 we have a2 = a1. To determine the coefficients
a we use the inner decomposition of u−∆a. Passing to the stretched coordinates
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ξ = x/∆a fixes the crack tip in the point (−1, 0) while the outer boundary moves
to infinity as ∆a → 0. We define the weight functions at infinity, ηj = Xj + η̃j, as
solution to the elasticity problem (in ξ-coordinates) in the plane with half infinite
crack ending in (−1, 0), the interface is situated on the line x1 = 0, and η̃j is regular
at infinity, that is

η̃j(ξ) ∼MjkY
k(ξ) + . . . , |ξ| → ∞. (16)

The 2 × 2 matrix M = (Mjk) is symmetric resp. hermitian and negative definite.
Near the crack tip, the solution u−∆a is approximated in terms of solutions of these
solutions in stretched coordinates, that is by the inner expansion of the form

u∆a
(
∆a−1x

)
= u∆a(ξ) ∼ b1η

1(ξ) + b2η
2(ξ) + . . . , ∆a� 1. (17)

The coefficients aj in (12) and bj in (17) depend on the distance ∆a, of course.

THE CALCULATION OF THE ENERGY RELEASE RATES

Exploiting the homogeneity relations of the power-law solutions Xj, Y j together
with the representation (16) of the weight functions ηj, the asymptotic representa-
tion at infinity of the inner decomposition (17) can be rewritten in x coordinates.
The asymptotic representation (13) of the weight functions ζj gives the asymptotics
of the inner decomposition (17) near the point (0, 0). In a matching zone between
the crack tip and the outer boundary Γ both decompositions must coincide. Equal-
izing the coefficients in front of the power-law solutions Xj, Y j gives a system of
four equations for the coefficients aj and bj, j = 1, 2. To be more specific, we put

K =

(
K1

K2

)
, a =

(
a1

a2

)
, b =

(
b1

b2

)
,

m =

(
m11 m12

m21 m22

)
, M =

(
M11 M12

M21 M22

)
,

whereKj are the coefficients in eq. (7),mij are given in eq. (13), andMij in eq. (16).

Case 1: Two real eigenvalues 0 < λ1 ≤ λ2.
With

M(∆a) =

(
(∆a)λ1 0

0 (∆a)λ2

)
·M ·

(
(∆a)λ1 0

0 (∆a)λ2

)
we obtain

a = M(∆a) ·
(
I−m ·M(∆a)

)−1 ·K, I =

(
1 0
0 1

)
. (18)
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It is clear that the inverse matrix appearing in this formula exist for small ∆a. Using
the Neumann expansion we find(

I−m ·M(∆a)
)−1

= I + m ·M(∆a) +O(∆a)2,

which gives
a = M(∆a) ·K +O(∆a)2.

By eq. (15) the main term in the energy release can be calculated to

∆U =
1

2

(
(∆a)2λ1M11(K1)2 + 2(∆a)λ1+λ2M12K1K2 + (∆a)2λ2M22(K2)2 + . . .

)
(19)

Case 2: A pair of complex eigenvalues λ1 = λ, λ2 = λ.
Here the weight functions also come in complex conjugate pairs

ζ1 = ζ, ζ2 = ζ, η1 = η, η2 = η.

while for the complex intensity factor K we have to take eq. (14)2. The matrices m
and M have complex entries now as well, but still are hermitian, and M is negative
definite. In particular, from (16) it follows that M can be written in the form

M =

(
M1 M2

M2 M1

)
(20)

The homogeneity relations for the X and Y now lead to

M(∆a) =

(
(∆a)λ 0

0 (∆a)λ

)
·M ·

(
(∆a)λ 0

0 (∆a)λ

)
while formulae (18) remains the same. The complex coefficients aj of the outer
decomposition now turn into

a1(∆a) = K(∆a)Λ+ΛM1 +K(∆a)2ΛM2 + . . . , a2(∆a) = a1(∆a). (21)

Hence the energy release ∆U while the crack tip moves from the tip (−∆a, 0) to
(0, 0) becomes

∆U = (∆a)2 Reλ

(
M1|K|2 + Re(K2M2e

−2i ln(h) Imλ)

)
+ . . . (22)

Case 3: A real double eigenvalue λ with geometric multiplicity one
While rewriting the inner decomposition of u∆a in terms of x-coordinates, one has
to take into account the logarithmic terms in the power-law solutions. We introduce
the matrix

Q± = Q±(∆a) =

(
1 0

± ln(∆a) 1

)
, then Q−1

± = Q∓.
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Equalizing the coefficients in front of Xj and Y j in the expansions eq. (17) and (12)
now leads to the system

K + m · a = Q>− · (∆a)−λb,

a = Q+ ·M · (∆a)λb.

From here we get

a = (∆a)2λQ+M ·
(
I−Q>+ ·m ·Q+ · (∆a)2λM

)−1 ·Q>+ ·K
= (∆a)2λQ+ ·M ·Q>+ ·K + . . . .

Using (15) once more leads now to

2∆U = (∆a)2λK> ·Q+ ·M ·Q>+ ·K + . . .

= (∆a)2λ
(
M11

(
K1 +K2 ln(∆a)

)2
+

2M12K2

(
K1 +K2 ln(∆a)

)
+M22K

2
2

)
+ . . .

Note that all these formulae remain valid but with an additional factor −1, if we
start with the crack tip already on the interface. Thereby the following obvious
changes must be taken into account: the weight functions ηj are now solutions
to the interface problem in the plane with half infinite crack where the tip is sit-
uated in (0, 1), the matrix M is positive definite, and formula (11)2 now reads
∆U = −1

2

∫
Γ
p · (u∆a − u0) ds.

CONCLUSIONS FOR THE CRACK GROWTH

While for a selvage crack in a homogenous material the energy release rate G always
satisfies

G =: lim
h↓0

−∆U

h
= K> ·M ·K > 0,

it may happen here that G = 0 or G = ∞. This means the crack cannot reach the
interface if

λ1 > 1/2, (Case 1) ,Reλ > 1/2 (Case 2) ,Λ > 1/2 (Case 3) ,

because the G = 0 and Condition (4) cannot be met. If the relation > is replaced
by < we have G = ∞ hence the crack undergoes at least a phase of unstable
propagation.

It may as well happen that there is an equality in the relation above. In case
1 the energy release rate is determined by the first summand in eq. (19) alone, if
λ1 < λ2. The crack tip will move in direction of the interface if G overcomes the
critical energy release rate in the first material. In case 3 we have G = ∞ unless
K2 = 0, then again K1 has to be critical. In case 2 there appears an oscillating term
in formula (22), however we may conclude that the crack can reach the interface if
|M2| is sufficiently small in comparison to |M1|.
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